570 research outputs found
Geometry and quantum delocalization of interstitial oxygen in silicon
The problem of the geometry of interstitial oxygen in silicon is settled by
proper consideration of the quantum delocalization of the oxygen atom around
the bond-center position. The calculated infrared absorption spectrum accounts
for the 517 and 1136 cm bands in their position, character, and isotope
shifts. The asymmetric lineshape of the 517 cm peak is also well
reproduced. A new, non-infrared-active, symmetric-stretching mode is found at
596 cm. First-principles calculations are presented supporting the
nontrivial quantum delocalization of the oxygen atom.Comment: uuencoded, compressed postscript file for the whole. 4 pages (figures
included), accepted in PR
Resolving the Antibaryon-Production Puzzle in High-Energy Heavy-Ion Collisions
We argue that the observed antiproton production in heavy-ion collisions at
CERN-SpS energies can be understood if (contrary to most sequential scattering
approaches) the backward direction in the process (with =5-6) is consistently accounted for within a thermal
framework. Employing the standard picture of subsequent chemical and thermal
freezeout, which induces an over-saturation of pion number with associated
chemical potentials of ~60-80 MeV, enhances the backward
reaction substantially. The resulting rates and corresponding cross sections
turn out to be large enough to maintain the abundance of antiprotons at
chemical freezeout until the decoupling temperature, in accord with the
measured ratio in Pb(158AGeV)+Pb collisions.Comment: 4 pages ReVTeX incl. 2 eps-figs, minor changes (two figs added, rate
eq. written more explicitly), version accepted for publication in PR
Jets as a Probe of Dense Matter at RHIC
Jet quenching in the matter created in high energy nucleus-nucleus collisions
provides a tomographic tool to probe the medium properties. Recent experimental
results on jet production at the Relativistic Heavy-Ion Collider (RHIC) are
reviewed. Jet properties in p+p and d+Au collisions have been measured,
establishing the baseline for studying jet modification in heavy-ion
collisions. Current progress on detailed studies of high transverse momentum
production in Au+Au collisions is discussed, with an emphasis on dihadron
correlation measurements.Comment: 8 pages, 9 figures. Plenary talk given at 17th International
Conference on Ultra Relativistic Nucleus-Nucleus Collisions (Quark Matter
2004), Oakland, California, 11-17 Jan 2004. Submitted to J.Phys.
Big-Bang Nucleosynthesis and Hadronic Decay of Long-Lived Massive Particles
We study the big-bang nucleosynthesis (BBN) with the long-lived exotic
particle, called X. If the lifetime of X is longer than \sim 0.1 sec, its decay
may cause non-thermal nuclear reactions during or after the BBN, altering the
predictions of the standard BBN scenario. We pay particular attention to its
hadronic decay modes and calculate the primordial abundances of the light
elements. Using the result, we derive constraints on the primordial abundance
of X. Compared to the previous studies, we have improved the following points
in our analysis: The JETSET 7.4 Monte Carlo event generator is used to
calculate the spectrum of hadrons produced by the decay of X; The evolution of
the hadronic shower is studied taking account of the details of the energy-loss
processes of the nuclei in the thermal bath; We have used the most recent
observational constraints on the primordial abundances of the light elements;
In order to estimate the uncertainties, we have performed the Monte Carlo
simulation which includes the experimental errors of the cross sections and
transfered energies. We will see that the non-thermal productions of D, He3,
He4 and Li6 provide stringent upper bounds on the primordial abundance of
late-decaying particle, in particular when the hadronic branching ratio of X is
sizable. We apply our results to the gravitino problem, and obtain upper bound
on the reheating temperature after inflation.Comment: 94 pages, 49 figures, to appear in Phys. Rev. D. This is a full
length paper of the preprint astro-ph/040249
Analysis of particle production in ultra-relativistic heavy ion collisions within a two-source statistical model
The experimental data on hadron yields and ratios in central lead-lead and
gold-gold collisions at 158 AGeV/ (SPS) and AGeV (RHIC),
respectively, are analysed within a two-source statistical model of an ideal
hadron gas. A comparison with the standard thermal model is given. The two
sources, which can reach the chemical and thermal equilibrium separately and
may have different temperatures, particle and strangeness densities, and other
thermodynamic characteristics, represent the expanding system of colliding
heavy ions, where the hot central fireball is embedded in a larger but cooler
fireball. The volume of the central source increases with rising bombarding
energy. Results of the two-source model fit to RHIC experimental data at
midrapidity coincide with the results of the one-source thermal model fit,
indicating the formation of an extended fireball, which is three times larger
than the corresponding core at SPS.Comment: 6 pages, REVTEX
Hadro-Chemistry and Evolution of (Anti-) Baryon Densities at RHIC
The consequences of hadro-chemical freezeout for the subsequent hadron gas
evolution in central heavy-ion collisions at RHIC and LHC energies are
discussed with special emphasis on effects due to antibaryons. Contrary to
naive expectations, their individual conservation, as implied by experimental
data, has significant impact on the chemical off-equilibrium composition of
hadronic matter at collider energies. This may reflect on a variety of
observables including source sizes and dilepton spectra.Comment: 4 pages ReVTeX incl. 3 ps-figs, submitted to PR
A comprehensive description of multiple observables in heavy-ion collisions at SPS
Combining and expanding on work from previous publications, a model for the
evolution of ultrarelativistic heavy-ion collisions at the CERN SPS for 158
AGeV beam energy is presented. Based on the assumption of thermalization and a
parametrization of the space-time expansion of the produced matter, this model
is able to describe a large set of observables including hadronic momentum
spectra, correlations and abundancies, the emission of real photons, dilepton
radiation and the suppression pattern of charmonia. Each of these obervables
provides unique capabilities to study the reaction dynamics and taken together
they form a strong and consistent picture of the evolving system. Based on the
emission of hard photons, we argue that a strongly interacting, hot and dense
system with temperatures above 250 MeV has to be created early in the reaction.
Such a system is bound to be different from hadronic matter and likely to be a
quark-gluon plasma, and we find that this assumption is in line with the
subsequent evolution of the system that is reflected in other observables.Comment: 21 pages, 10 figures, submitted to J. Phys.
Observation of Lambda H-4 hyperhydrogen by decay-pion spectroscopy in electron scattering
At the Mainz Microtron MAMI, the first high-resolution pion spectroscopy from
decays of strange systems was performed by electron scattering off a Be-9
target in order to study the ground-state masses of Lambda-hypernuclei.
Positively charged kaons were detected by a short-orbit spectrometer with a
broad momentum acceptance at zero degree forward angles with respect to the
beam, efficiently tagging the production of strangeness in the target nucleus.
In coincidence, negatively charged decay-pions were detected by two independent
high-resolution spectrometers. About 10^3 pionic weak decays of hyperfragments
and hyperons were observed. The pion momentum distribution shows a
monochromatic peak at p_pi ~ 133 MeV/c, corresponding to the unique signature
for the two-body decay of hyperhydrogen Lambda H-4 -> He-4 + pi-, stopped
inside the target. Its binding energy was determined to be B_Lambda = 2.12 +-
0.01 (stat.) +- 0.09 (syst.) MeV with respect to the H-3 + Lambda mass
- …