7,903 research outputs found

    A Feynman graph selection tool in GRACE system

    Get PDF
    We present a Feynman graph selection tool {\tt grcsel}, which is an interpreter written in C language. In the framework of {\tt GRACE}, it enables us to get a subset of Feynman graphs according to given conditions.Comment: 3 pages, 2 figures, Latex, ACAT200

    State Differentiation by Transient Truncation in Coupled Threshold Dynamics

    Full text link
    Dynamics with a threshold input--output relation commonly exist in gene, signal-transduction, and neural networks. Coupled dynamical systems of such threshold elements are investigated, in an effort to find differentiation of elements induced by the interaction. Through global diffusive coupling, novel states are found to be generated that are not the original attractor of single-element threshold dynamics, but are sustained through the interaction with the elements located at the original attractor. This stabilization of the novel state(s) is not related to symmetry breaking, but is explained as the truncation of transient trajectories to the original attractor due to the coupling. Single-element dynamics with winding transient trajectories located at a low-dimensional manifold and having turning points are shown to be essential to the generation of such novel state(s) in a coupled system. Universality of this mechanism for the novel state generation and its relevance to biological cell differentiation are briefly discussed.Comment: 8 pages. Phys. Rev. E. in pres

    Symbiotic Cell Differentiation and Cooperative Growth in Multicellular Aggregates

    Full text link
    As cells grow and divide under a given environment, they become crowded and resources are limited, as seen in bacterial biofilms and multicellular aggregates. These cells often show strong interactions through exchanging chemicals, as in quorum sensing, to achieve mutualism. Here, to achieve stable division of labor, three properties are required. First, isogenous cells differentiate into several types. Second, this aggregate of distinct cell types shows better growth than that of isolated cells, by achieving division of labor. Third, this cell aggregate is robust in the number distribution of differentiated cell types. We here address how cells acquire the ability of cell differentiation and division of labor simultaneously, which is also connected with the robustness of a cell society. For this purpose, we developed a dynamical-systems model of cells consisting of chemical components with intracellular catalytic reaction dynamics. The reactions convert external nutrients into internal components for cellular growth, and the divided cells interact via chemical diffusion. We found that cells sharing an identical catalytic network spontaneously differentiate via induction from cell-cell interactions, and then achieve division of labor, enabling a higher growth rate than that in the unicellular case. This symbiotic differentiation emerged for a class of reaction networks with limited resources and strong cell-cell interactions. Then, robustness in the cell type distribution was achieved, while instability of collective growth could emerge even among the cooperative cells when the internal reserves of products were dominant. The present mechanism is simple and general as a natural result of interacting cells with resource limitation, and is consistent with the observed behaviors and forms of several aggregates of unicellular organisms.Comment: 14 pages, 6 figure

    Short Gamma-Ray Bursts with Extended Emission Observed with Swift/BAT and Fermi/GBM

    Full text link
    Some short GRBs are followed by longer extended emission, lasting anywhere from ~10 to ~100 s. These short GRBs with extended emission (EE) can possess observational characteristics of both short and long GRBs (as represented by GRB 060614), and the traditional classification based on the observed duration places some of them in the long GRB class. While GRBs with EE pose a challenge to the compact binary merger scenario, they may therefore provide an important link between short and long duration events. To identify the population of GRBs with EE regardless of their initial classifications, we performed a systematic search of short GRBs with EE using all available data (up to February 2013) of both Swift/BAT and Fermi/GBM. The search identified 16 BAT and 14 GBM detected GRBs with EE, several of which are common events observed with both detectors. We investigated their spectral and temporal properties for both the spikes and the EE, and examined correlations among these parameters. Here we present the results of the systematic search as well as the properties of the identified events. Finally, their properties are also compared with short GRBs with EE observed with BATSE, identified through our previous search effort. We found several strong correlations among parameters, especially when all of the samples were combined. Based on our results, a possible progenitor scenario of two-component jet is discussed.Comment: Published in MNRAS; matched to the published versio

    Emergent lattices with geometrical frustration in doped extended Hubbard models

    Full text link
    Spontaneous charge ordering occurring in correlated systems may be considered as a possible route to generate effective lattice structures with unconventional couplings. For this purpose we investigate the phase diagram of doped extended Hubbard models on two lattices: (i) the honeycomb lattice with on-site UU and nearest-neighbor VV Coulomb interactions at 3/43/4 filling (n=3/2n=3/2) and (ii) the triangular lattice with on-site UU, nearest-neighbor VV, and next-nearest-neighbor VV' Coulomb interactions at 3/83/8 filling (n=3/4n=3/4). We consider various approaches including mean-field approximations, perturbation theory, and variational Monte Carlo. For the honeycomb case (i), charge order induces an effective triangular lattice at large values of U/tU/t and V/tV/t, where tt is the nearest-neighbor hopping integral. The nearest-neighbor spin exchange interactions on this effective triangular lattice are antiferromagnetic in most of the phase diagram, while they become ferromagnetic when UU is much larger than VV. At U/t(V/t)3U/t\sim (V/t)^3, ferromagnetic and antiferromagnetic exchange interactions nearly cancel out, leading to a system with four-spin ring-exchange interactions. On the other hand, for the triangular case (ii) at large UU and finite VV', we find no charge order for small VV, an effective kagome lattice for intermediate VV, and one-dimensional charge order for large VV. These results indicate that Coulomb interactions induce [case (i)] or enhance [case(ii)] emergent geometrical frustration of the spin degrees of freedom in the system, by forming charge order.Comment: 18 pages, 26 figure

    Predictive flavour symmetries of the neutrino mass matrix

    Get PDF
    Here we propose an A4A_4 flavour symmetry model which implies a lower bound on the neutrinoless double beta decay rate, corresponding to an effective mass parameter M_{ee} \gsim 0.03 eV, and a direct correlation between the expected magnitude of CP violation in neutrino oscillations and the value of sin2θ13\sin^2\theta_{13}, as well as a nearly maximal CP phase δ\delta.Comment: 4 pages, 4 figure

    Spontaneous symmetry breaking in correlated wave functions

    Full text link
    We show that Jastrow-Slater wave functions, in which a density-density Jastrow factor is applied onto an uncorrelated fermionic state, may possess long-range order even when all symmetries are preserved in the wave function. This fact is mainly related to the presence of a sufficiently strong Jastrow term (also including the case of full Gutzwiller projection, suitable for describing spin models). Selected examples are reported, including the spawning of N\'eel order and dimerization in spin systems, and the stabilization of charge and orbital order in itinerant electronic systems.Comment: 13 pages, 11 figure

    Anomalous Quartic WWγγWW\gamma\gamma and ZZγγZZ\gamma\gamma Couplings in eγe\gamma Collision With Initial Beams and Final State Polarizations

    Full text link
    The constraints on the anomalous quartic WWγγWW\gamma\gamma and ZZγγZZ\gamma\gamma gauge boson couplings are investigated through the processes eγWγνee\gamma\to W^{-}\gamma\nu_{e} and eγZγee\gamma\to Z\gamma e. Considering the longitudinal and transverse polarization states of the final W or Z boson and incoming beam polarizations we find 95% confidence level limits on the anomalous coupling parameters a0a_{0} and aca_{c} with an integrated luminosity of 500 fb1fb^{-1} and s\sqrt{s}=0.5, 1 TeV energies. Assuming the W+WγγW^{+}W^{-}\gamma\gamma couplings are independent of the ZZγγZZ\gamma\gamma couplings we show that the longitudinal polarization state of the final gauge boson improves the sensitivity to anomalous couplings by a factor of 2-3 depending on energy and coupling. An extra enhancement in sensitivity by a factor of 1.3 comes from a set of initial beam polarizations
    corecore