24 research outputs found

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    Sensitive and Rapid Detection of Herpes Simplex Virus and Varicella-Zoster Virus DNA by Loop-Mediated Isothermal Amplification

    No full text
    Loop-mediated isothermal amplification (LAMP) is a novel nucleic acid amplification method in which reagents react rapidly and efficiently, with a high specificity, under isothermal conditions. We used a LAMP assay for the detection of herpes simplex virus type 1 (HSV-1), herpes simplex virus type 2 (HSV-2), and varicella-zoster virus (VZV). The virus specificities of primers were confirmed by using 50 HSV-1, 50 HSV-2, and 8 VZV strains. The assay was performed for 45 min at 65°C. The LAMP assay had a 10-fold higher sensitivity than a PCR assay. An analysis of nucleotide sequence variations in the target and primer regions used for the LAMP assay indicated that 3 of 50 HSV-1 strains had single nucleotide polymorphisms. No HSV-2 or VZV strains had nucleotide polymorphisms. Regardless of the sequence variation, there were no differences in sensitivity with the HSV-1-specific LAMP assay. To evaluate the application of the LAMP assay for clinical diagnosis, we tested clinical samples from 40 genital herpes patients and 20 ocular herpes patients. With the LAMP assay, 41 samples with DNA extraction and 26 direct samples without DNA extraction were identified as positive for HSV-1 or HSV-2, although 37 samples with DNA extraction and just one without DNA extraction were positive by a PCR assay. Thus, the LAMP assay was less influenced than the PCR assay by the presence of inhibitory substances in clinical samples. These observations indicate that the LAMP assay is very useful for the diagnosis of HSV-1, HSV-2, and VZV infections

    Epidemic Keratoconjunctivitis Due to the Novel Hexon-Chimeric-Intermediate 22,37/H8 Human Adenovirus ▿

    No full text
    In a 2-month period in 2003, we encountered an outbreak of epidemic keratoconjunctivitis (EKC) in Japan. We detected 67 human adenoviruses (HAdVs) by PCR from eye swabs of patients with EKC at five eye clinics in different parts of Japan. Forty-one of the 67 HAdV DNAs from the swabs were identified as HAdV-37 by phylogenetic analysis using a partial hexon gene sequence. When the restriction patterns of these viral genomes were compared with that of the HAdV-37 prototype strain, one isolate showed a never-before-seen restriction pattern. Within 1 year, we encountered three more EKC cases caused by a genetically identical virus: two nosocomial infections at two different university hospitals and a sporadic infection at an eye clinic. We determined the nucleotide sequences of the full-length hexon and fiber genes of these isolates and compared them to those of the 51 prototype strains. Surprisingly, the sequence of the hexon (ɛ determinant) loop-1 and -2 regions showed the highest nucleotide identity with HAdV-22, a rare EKC isolate. However, the nucleotide sequence of the fiber gene was identical to that of the HAdV-8 prototype strain. 22 We propose that this virus is a new hexon-chimeric intermediate HAdV-22,37/H8, and may be an etiological agent of EKC

    Differential Mutation Patterns in Thymidine Kinase and DNA Polymerase Genes of Herpes Simplex Virus Type 1 Clones Passaged in the Presence of Acyclovir or Penciclovir

    No full text
    A total of 21 clones of acyclovir (ACV)-resistant (ACV(r)) herpes simplex virus type 1 (HSV-1) and 23 clones of penciclovir (PCV)-resistant (PCV(r)) HSV-1, emerging during serial passages in the presence of ACV or PCV, were isolated under conditions excluding contamination of resistant mutants in the starting virus culture, and their mutations in the thymidine kinase (TK) and DNA polymerase (DNA Pol) genes were analyzed comparatively. Mutations in the TK genes from ACV(r) mutants consisted of 50% single nucleotide substitutions and 50% frameshift mutations, while the corresponding figures for the PCV(r) mutants were 4 and 96%, respectively (P < 0.001). Eight of the 21 ACV(r) clones, but none of the 23 PCV(r) clones, had mutations in DNA Pol. Only nucleotide substitution(s) could be detected in the DNA Pol gene, as the gene is essential for virus replication. Therefore, the results for the DNA Pol mutants are concordant with those for the TK mutants in that a single nucleotide substitution was commonly observed in the ACV(r), but not in the PCV(r), mutants. These results clearly point to differential mutation patterns between ACV(r) and PCV(r) HSV-1 clones

    Pirfenidone inhibits myofibroblast differentiation and lung fibrosis development during insufficient mitophagy

    No full text
    Abstract Background Pirfenidone (PFD) is an anti-fibrotic agent used to treat idiopathic pulmonary fibrosis (IPF), but its precise mechanism of action remains elusive. Accumulation of profibrotic myofibroblasts is a crucial process for fibrotic remodeling in IPF. Recent findings show participation of autophagy/mitophagy, part of the lysosomal degradation machinery, in IPF pathogenesis. Mitophagy has been implicated in myofibroblast differentiation through regulating mitochondrial reactive oxygen species (ROS)-mediated platelet-derived growth factor receptor (PDGFR) activation. In this study, the effect of PFD on autophagy/mitophagy activation in lung fibroblasts (LF) was evaluated, specifically the anti-fibrotic property of PFD for modulation of myofibroblast differentiation during insufficient mitophagy. Methods Transforming growth factor-β (TGF-β)-induced or ATG5, ATG7, and PARK2 knockdown-mediated myofibroblast differentiation in LF were used for in vitro models. The anti-fibrotic role of PFD was examined in a bleomycin (BLM)-induced lung fibrosis model using PARK2 knockout (KO) mice. Results We found that PFD induced autophagy/mitophagy activation via enhanced PARK2 expression, which was partly involved in the inhibition of myofibroblast differentiation in the presence of TGF-β. PFD inhibited the myofibroblast differentiation induced by PARK2 knockdown by reducing mitochondrial ROS and PDGFR-PI3K-Akt activation. BLM-treated PARK2 KO mice demonstrated augmentation of lung fibrosis and oxidative modifications compared to those of BLM-treated wild type mice, which were efficiently attenuated by PFD. Conclusions These results suggest that PFD induces PARK2-mediated mitophagy and also inhibits lung fibrosis development in the setting of insufficient mitophagy, which may at least partly explain the anti-fibrotic mechanisms of PFD for IPF treatment
    corecore