176 research outputs found
Endothelial LRP1 transports amyloid-β1-42 across the blood-brain barrier
According to the neurovascular hypothesis, impairment of low-density lipoprotein receptor-related protein-1 (LRP1) in brain capillaries of the blood-brain barrier (BBB) contributes to neurotoxic amyloid-beta (A beta) brain accumulation and drives Alzheimer's disease (AD) pathology. However, due to conflicting reports on the involvement of LRP1 in A beta transport and the expression of LRP1 in brain endothelium, the role of LRP1 at the BBB is uncertain. As global Lrp1 deletion in mice is lethal, appropriate models to study the function of LRP1 are lacking. Moreover, the relevance of systemic A beta clearance to AD pathology remains unclear, as no BBB-specific knockout models have been available. Here, we developed transgenic mouse strains that allow for tamoxifen-inducible deletion of Lrp1 specifically within brain endothelial cells (Slo1c1-CreER(Tz) Lrp1(fl/fl) mice) and used these mice to accurately evaluate LRP1-mediated A beta BBB clearance in vivo. Selective deletion of Lrp1 in the brain endothelium of C57BL/6 mice strongly reduced brain efflux of injected [I-125] A beta(1-42). Additionally, in the 5xFAD mouse model of AD, brain endothelial-specific Lrp1 deletion reduced plasma A beta levels and elevated soluble brain A beta, leading to aggravated spatial learning and memory deficits, thus emphasizing the importance of systemic AD elimination via the BBB. Together, our results suggest that receptor-mediated A beta BBB clearance may be a potential target for treatment and prevention of A beta brain accumulation in AD
Deficiency in LRP6-Mediated Wnt Signaling Contributes to Synaptic Abnormalities and Amyloid Pathology in Alzheimer’s Disease
该课题是卜国军教授课题组与美国梅奥医学中心、以及厦门大学神经科学研究所教授许华曦课题组等多位科学家合作完成的。由许华曦和卜国军领导的厦门大学神经科学研究所暨福建省神经退行性疾病及衰老研究重点实验室近年来在神经退行性疾病研究领域取得了一系列优秀的成果,先后在NatMed、NatStructMolBiol、NatRevNeurol、Neuron、ProcNatlAcadSciUSA等国际高水平杂志上以厦门大学为第一署名或通讯单位发表了30多篇SCI论文,总影响因子达250多。Alzheimer’s disease (AD) is an age-related neurological disorder characterized by synaptic loss and dementia. The low-density lipoprotein receptor-related protein 6 (LRP6) is an essential coreceptor for Wnt signaling, and its genetic variants have been linked to AD risk. Here we report that neuronal LRP6-mediated Wnt signaling is critical for synaptic function and cognition. Conditional deletion of Lrp6 gene in mouse forebrain neurons leads to age-dependent deficits in synaptic integrity and memory. Neuronal LRP6 deficiency in an amyloid mouse model also leads to exacerbated amyloid pathology due to increased APP processing to amyloid-β. In humans, LRP6 and Wnt signaling are significantly downregulated in AD brains, likely by a mechanism that depends on amyloid-β. Our results define a critical pathway in which decreased LRP6-mediated Wnt signaling, synaptic dysfunction, and elevated Aβ synergistically accelerate AD progression and suggest that restoring LRP6-mediated Wnt signaling can be explored as a viable strategy for AD therapy
Global gene expression analysis of the mouse colonic mucosa treated with azoxymethane and dextran sodium sulfate
<p>Abstract</p> <p>Background</p> <p>Chronic inflammation is well known to be a risk factor for colon cancer. Previously we established a novel mouse model of inflammation-related colon carcinogenesis, which is useful to examine the involvement of inflammation in colon carcinogenesis. To shed light on the alterations in global gene expression in the background of inflammation-related colon cancer and gain further insights into the molecular mechanisms underlying inflammation-related colon carcinogenesis, we conducted a comprehensive DNA microarray analysis using our model.</p> <p>Methods</p> <p>Male ICR mice were given a single ip injection of azoxymethane (AOM, 10 mg/kg body weight), followed by the addition of 2% (w/v) dextran sodium sulfate (DSS) to their drinking water for 7 days, starting 1 week after the AOM injection. We performed DNA microarray analysis (Affymetrix GeneChip) on non-tumorous mucosa obtained from mice that received AOM/DSS, AOM alone, and DSS alone, and untreated mice at wks 5 and 10.</p> <p>Results</p> <p>Markedly up-regulated genes in the colonic mucosa given AOM/DSS at wk 5 or 10 included Wnt inhibitory factor 1 (<it>Wif1</it>, 48.5-fold increase at wk 5 and 5.7-fold increase at wk 10) and plasminogen activator, tissue (<it>Plat</it>, 48.5-fold increase at wk 5), myelocytomatosis oncogene (<it>Myc</it>, 3.0-fold increase at wk 5), and phospholipase A2, group IIA (platelets, synovial fluid) (<it>Plscr2</it>, 8.0-fold increase at wk 10). The notable down-regulated genes in the colonic mucosa of mice treated with AOM/DSS were the peroxisome proliferator activated receptor binding protein (<it>Pparbp</it>, 0.06-fold decrease at wk 10) and the transforming growth factor, beta 3 (<it>Tgfb3</it>, 0.14-fold decrease at wk 10). The inflammation-related gene, peroxisome proliferator activated receptor γ (<it>Pparγ </it>0.38-fold decrease at wk 5), was also down-regulated in the colonic mucosa of mice that received AOM/DSS.</p> <p>Conclusion</p> <p>This is the first report describing global gene expression analysis of an AOM/DSS-induced mouse colon carcinogenesis model, and our findings provide new insights into the mechanisms of inflammation-related colon carcinogenesis and the establishment of novel therapies and preventative strategies against carcinogenesis.</p
Nanoparticle display of prefusion coronavirus spike elicits S1-focused cross-reactive antibody response against diverse coronavirus subgenera
Multivalent antigen display is a fast-growing area of interest toward broadly protective vaccines. Current nanoparticle-based vaccine candidates demonstrate the ability to confer antibody-mediated immunity against divergent strains of notably mutable viruses. In coronaviruses, this work is predominantly aimed at targeting conserved epitopes of the receptor binding domain. However, targeting conserved non-RBD epitopes could limit the potential for antigenic escape. To explore new potential targets, we engineered protein nanoparticles displaying coronavirus prefusion-stabilized spike (CoV_S-2P) trimers derived from MERS-CoV, SARS-CoV-1, SARS-CoV-2, hCoV-HKU1, and hCoV-OC43 and assessed their immunogenicity in female mice. Monotypic SARS-1 nanoparticles elicit cross-neutralizing antibodies against MERS-CoV and protect against MERS-CoV challenge. MERS and SARS nanoparticles elicit S1-focused antibodies, revealing a conserved site on the S N-terminal domain. Moreover, mosaic nanoparticles co-displaying distinct CoV_S-2P trimers elicit antibody responses to distant cross-group antigens and protect male and female mice against MERS-CoV challenge. Our findings will inform further efforts toward the development of pan-coronavirus vaccines
Whole Transcriptome Profiling of Successful Immune Response to Vibrio Infections in the Oyster Crassostrea gigas by Digital Gene Expression Analysis
The cultivated Pacific oyster Crassostrea gigas has suffered for decades large scale summer mortality phenomenon resulting from the interaction between the environment parameters, the oyster physiological and/or genetic status and the presence of pathogenic microorganisms including Vibrio species. To obtain a general picture of the molecular mechanisms implicated in C. gigas immune responsiveness to circumvent Vibrio infections, we have developed the first deep sequencing study of the transcriptome of hemocytes, the immunocompetent cells. Using Digital Gene Expression (DGE), we generated a transcript catalog of up-regulated genes from oysters surviving infection with virulent Vibrio strains (Vibrio splendidus LGP32 and V. aestuarianus LPi 02/41) compared to an avirulent one, V. tasmaniensis LMG 20012T. For that an original experimental infection protocol was developed in which only animals that were able to survive infections were considered for the DGE approach. We report the identification of cellular and immune functions that characterize the oyster capability to survive pathogenic Vibrio infections. Functional annotations highlight genes related to signal transduction of immune response, cell adhesion and communication as well as cellular processes and defence mechanisms of phagocytosis, actin cytosqueleton reorganization, cell trafficking and autophagy, but also antioxidant and anti-apoptotic reactions. In addition, quantitative PCR analysis reveals the first identification of pathogen-specific signatures in oyster gene regulation, which opens the way for in depth molecular studies of oyster-pathogen interaction and pathogenesis. This work is a prerequisite for the identification of those physiological traits controlling oyster capacity to survive a Vibrio infection and, subsequently, for a better understanding of the phenomenon of summer mortality
Identification and Validation of Novel Cerebrospinal Fluid Biomarkers for Staging Early Alzheimer's Disease
Ideally, disease modifying therapies for Alzheimer disease (AD) will be applied during the 'preclinical' stage (pathology present with cognition intact) before severe neuronal damage occurs, or upon recognizing very mild cognitive impairment. Developing and judiciously administering such therapies will require biomarker panels to identify early AD pathology, classify disease stage, monitor pathological progression, and predict cognitive decline. To discover such biomarkers, we measured AD-associated changes in the cerebrospinal fluid (CSF) proteome.CSF samples from individuals with mild AD (Clinical Dementia Rating [CDR] 1) (n = 24) and cognitively normal controls (CDR 0) (n = 24) were subjected to two-dimensional difference-in-gel electrophoresis. Within 119 differentially-abundant gel features, mass spectrometry (LC-MS/MS) identified 47 proteins. For validation, eleven proteins were re-evaluated by enzyme-linked immunosorbent assays (ELISA). Six of these assays (NrCAM, YKL-40, chromogranin A, carnosinase I, transthyretin, cystatin C) distinguished CDR 1 and CDR 0 groups and were subsequently applied (with tau, p-tau181 and Aβ42 ELISAs) to a larger independent cohort (n = 292) that included individuals with very mild dementia (CDR 0.5). Receiver-operating characteristic curve analyses using stepwise logistic regression yielded optimal biomarker combinations to distinguish CDR 0 from CDR>0 (tau, YKL-40, NrCAM) and CDR 1 from CDR<1 (tau, chromogranin A, carnosinase I) with areas under the curve of 0.90 (0.85-0.94 95% confidence interval [CI]) and 0.88 (0.81-0.94 CI), respectively.Four novel CSF biomarkers for AD (NrCAM, YKL-40, chromogranin A, carnosinase I) can improve the diagnostic accuracy of Aβ42 and tau. Together, these six markers describe six clinicopathological stages from cognitive normalcy to mild dementia, including stages defined by increased risk of cognitive decline. Such a panel might improve clinical trial efficiency by guiding subject enrollment and monitoring disease progression. Further studies will be required to validate this panel and evaluate its potential for distinguishing AD from other dementing conditions
Plos Med
Background The ε4 allele of apolipoprotein E (APOE) gene and increasing age are two of the most important known risk factors for developing Alzheimer disease (AD). The diagnosis of AD based on clinical symptoms alone is known to have poor specificity; recently developed diagnostic criteria based on biomarkers that reflect underlying AD neuropathology allow better assessment of the strength of the associations of risk factors with AD. Accordingly, we examined the global and age-specific association between APOE genotype and AD by using the A/T/N classification, relying on the cerebrospinal fluid (CSF) levels of β-amyloid peptide (A, β-amyloid deposition), phosphorylated tau (T, pathologic tau), and total tau (N, neurodegeneration) to identify patients with AD. Methods and findings This case–control study included 1,593 white AD cases (55.4% women; mean age 72.8 [range = 44–96] years) with abnormal values of CSF biomarkers from nine European memory clinics and the American Alzheimer’s Disease Neuroimaging Initiative (ADNI) study. A total of 11,723 dementia-free controls (47.1% women; mean age 65.6 [range = 44–94] years) were drawn from two longitudinal cohort studies (Whitehall II and Three-City), in which incident cases of dementia over the follow-up were excluded from the control population. Odds ratio (OR) and population attributable fraction (PAF) for AD associated with APOE genotypes were determined, overall and by 5-year age categories. In total, 63.4% of patients with AD and 22.6% of population controls carried at least one APOE ε4 allele. Compared with non-ε4 carriers, heterozygous ε4 carriers had a 4.6 (95% confidence interval 4.1–5.2; p < 0.001) and ε4/ε4 homozygotes a 25.4 (20.4–31.2; p < 0.001) higher OR of AD in unadjusted analysis. This association was modified by age (p for interaction < 0.001). The PAF associated with carrying at least one ε4 allele was greatest in the 65–70 age group (69.7%) and weaker before 55 years (14.2%) and after 85 years (22.6%). The protective effect of APOE ε2 allele for AD was unaffected by age. Main study limitations are that analyses were based on white individuals and AD cases were drawn from memory centers, which may not be representative of the general population of patients with AD. Conclusions In this study, we found that AD diagnosis based on biomarkers was associated with APOE ε4 carrier status, with a higher OR than previously reported from studies based on only clinical AD criteria. This association differs according to age, with the strongest effect at 65–70 years. These findings highlight the need for early interventions for dementia prevention to mitigate the effect of APOE ε4 at the population level
Early T Cell Recognition of B Cells following Epstein-Barr Virus Infection: Identifying Potential Targets for Prophylactic Vaccination
Epstein-Barr virus, a B-lymphotropic herpesvirus, is the cause of infectious mononucleosis, has strong aetiologic links with several malignancies and has been implicated in certain autoimmune diseases. Efforts to develop a prophylactic vaccine to prevent or reduce EBV-associated disease have, to date, focused on the induction of neutralising antibody responses. However, such vaccines might be further improved by inducing T cell responses capable of recognising and killing recently-infected B cells. In that context, EBNA2, EBNA-LP and BHRF1 are the first viral antigens expressed during the initial stage of B cell growth transformation, yet have been poorly characterised as CD8+ T cell targets. Here we describe CD8+ T cell responses against each of these three "first wave" proteins, identifying target epitopes and HLA restricting alleles. While EBNA-LP and BHRF1 each contained one strong CD8 epitope, epitopes within EBNA2 induced immunodominant responses through several less common HLA class I alleles (e.g. B*3801 and B*5501), as well as subdominant responses through common class I alleles (e.g. B7 and C*0304). Importantly, such EBNA2-specific CD8+ T cells recognised B cells within the first day post-infection, prior to CD8+ T cells against well-characterised latent target antigens such as EBNA3B or LMP2, and effectively inhibited outgrowth of EBV-transformed B cell lines. We infer that "first wave" antigens of the growth-transforming infection, especially EBNA2, constitute potential CD8+ T cell immunogens for inclusion in prophylactic EBV vaccine design
- …