11,068 research outputs found

    Elevated temperature deformation of thoria dispersed nickel-chromium

    Get PDF
    The deformation behavior of thoria nickel-chromium (TD-NiCr) was examined over the temperature range 593 C (1100 F) to 1260 C (2300 F) in tension and compression and at 1093 C (2000 F) in creep. Major emphasis was placed on: (1) the effects of the material and test related variables (grain size, temperature, stress and strain rate) on the deformation process; and (2) the evaluation of single crystal TD-NiCr material produced by a directional recrystallization process. Elevated temperature yield strength levels and creep activation enthalpies were found to increase with increasing grain size reaching maximum values for the single crystal TD-NiCr. Stress exponent of the steady state creep rate was also significantly higher for the single crystal TD-NiCr as compared to that determined for the polycrystalline materials. The elevated temperature deformation of TD-NiCr was analyzed in terms of two concurrent, parallel processes: diffusion controlled grain boundary sliding, and dislocation motion

    Probing Neutral Majorana Fermion Edge Modes with Charge Transport

    Get PDF
    We propose two experiments to probe the Majorana fermion edge states that occur at a junction between a superconductor and a magnet deposited on the surface of a topological insulator. Combining two Majorana fermions into a single Dirac fermion on a magnetic domain wall allows the neutral Majorana fermions to be probed with charge transport. We will discuss a novel interferometer for Majorana fermions, which probes their Z_2 phase. This setup also allows the transmission of neutral Majorana fermions through a point contact to be measured. We introduce a point contact formed by a superconducting junction and show that its transmission can be controlled by the phase difference across the junction. We discuss the feasibility of these experiments using the recently discovered topological insulator Bi_2 Se_3.Comment: 4 page

    Coulomb blockade in a Si channel gated by an Al single-electron transistor

    Full text link
    We incorporate an Al-AlO_x-Al single-electron transistor as the gate of a narrow (~100 nm) metal-oxide-semiconductor field-effect transistor (MOSFET). Near the MOSFET channel conductance threshold, we observe oscillations in the conductance associated with Coulomb blockade in the channel, revealing the formation of a Si single-electron transistor. Abrupt steps present in sweeps of the Al transistor conductance versus gate voltage are correlated with single-electron charging events in the Si transistor, and vice versa. Analysis of these correlations using a simple electrostatic model demonstrates that the two single-electron transistor islands are closely aligned, with an inter-island capacitance approximately equal to 1/3 of the total capacitance of the Si transistor island, indicating that the Si transistor is strongly coupled to the Al transistor.Comment: 3 pages, 4 figures, 1 table; typos corrected, minor clarifications added; published in AP

    Operational applications of NOAA-VHRR imagery in Alaska

    Get PDF
    Near-real time operational applications of NOAA satellite enhanced thermal infrared imagery to snow monitoring for river flood forecasts, and a photographic overlay technique of imagery to enhance snowcover are presented. Ground truth comparisons show a thermal accuracy of approximately + or - 1 C for detection of surface radiative temperatures. The application of NOAA imagery to flood mapping is also presented

    Superpartners at LHC and Future Colliders: Predictions from Constrained Compactified M-Theory

    Get PDF
    We study a realistic top-down M-theory compactification with low-scale effective Supersymmetry, consistent with phenomenological constraints. A combination of top-down and generic phenomenological constraints fix the spectrum. The gluino mass is predicted to be about 1.5 TeV. Three and only three superpartner channels, g~g~\tilde{g} \tilde{g}, χ20χ1±\chi_2^0 \chi_1^\pm and χ1+χ1−\chi_1^+ \chi_1^- (where χ20,χ1±\chi_2^0, \chi_1^\pm are Wino-like), are expected to be observable at LHC-14. We also investigate the prospects of finding heavy squarks and Higgsinos at future colliders. Gluino-stop-top, gluino-sbottom-bottom associated production and first generation squark associated production should be observable at a 100 TeV collider, along with direct production of heavy Higgsinos. Within this framework the discovery of a single sparticle is sufficient to determine uniquely the SUSY spectrum, yielding a number of concrete testable predictions for LHC-14 and future colliders, and determination of M3/2M_{3/2} and thereby other fundamental quantities.Comment: 19 pages, 4 figure

    A study of the break-up characteristics of Chena River Basin using ERTS imagery

    Get PDF
    The author has identified the following significant results. The Chena River Basin was selected because of the availability of ground truth data for comparison. Very good agreement for snow distribution and rates of ablation was found between the ERTS-1 imagery, the snowmelt model, and field measurements. Monitoring snowmelt rates for relatively small basins appears to be practical. The main limitation of the ERTS-1 imagery is the interval of coverage. More frequent overflights providing coverage are needed for the study of transient hydrologic events. ERTS-1 data is most useful when used in conjunction with snowmelt prediction models and existing snow course data. These results should prove very useful in preliminary assessment of hydrologic conditions in ungaged watersheds and will provide a tool for month-to-month volume forecasting

    Break-up characteristics of the Chena River watershed, central Alaska

    Get PDF
    The author has identified the following significant results. The snow melt for a small watershed (5130 sq km) in Central Alaska was successfully monitored with ERTS-1 imagery. Aerial photography was used as supporting data for periods without satellite coverage. Comparison both with actual measurements and with a computer model showed good agreement

    InN dielectric function from the midinfrared to the visible range

    Full text link
    The dispersion of the dielectric function for wurtzite InN is analytically evaluated in the region near the fundamental energy gap. The real part of the dielectric function has a logarithmic singularity at the absorption edge. This results in the large contribution into the optical dielectric constant. For samples with degenerate carriers, the real part of the dielectric function is divergent at the absorption edge. The divergence is smeared with temperatures or relaxation rate. The imaginary part of the dielectric function has a plateau far away from the absorption onset.Comment: 5 pages, 2 figure
    • …
    corecore