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Probing Neutral Majorana Fermion Edge Modes with Charge Transport

Abstract
We propose two experiments to probe the Majorana fermion edge states that occur at a junction between a
superconductor and a magnet deposited on the surface of a topological insulator. Combining two Majorana
fermions into a single Dirac fermion on a magnetic domain wall allows the neutral Majorana fermions to be
probed with charge transport. We will discuss a novel interferometer for Majorana fermions, which probes
their Z2 phase. This setup also allows the transmission of neutral Majorana fermions through a point contact
to be measured. We introduce a point contact formed by a superconducting junction and show that its
transmission can be controlled by the phase difference across the junction. We discuss the feasibility of these
experiments using the recently discovered topological insulator Bi2Se3.
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Probing Neutral Majorana Fermion Edge Modes with Charge Transport

Liang Fu and C. L. Kane

Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
(Received 13 March 2009; published 28 May 2009)

We propose two experiments to probe the Majorana fermion edge states that occur at a junction

between a superconductor and a magnet deposited on the surface of a topological insulator. Combining

two Majorana fermions into a single Dirac fermion on a magnetic domain wall allows the neutral

Majorana fermions to be probed with charge transport. We will discuss a novel interferometer for

Majorana fermions, which probes their Z2 phase. This setup also allows the transmission of neutral

Majorana fermions through a point contact to be measured. We introduce a point contact formed by a

superconducting junction and show that its transmission can be controlled by the phase difference across

the junction. We discuss the feasibility of these experiments using the recently discovered topological

insulator Bi2Se3.

DOI: 10.1103/PhysRevLett.102.216403 PACS numbers: 71.10.Pm, 03.67.Lx, 74.45.+c, 74.90.+n

Majorana fermions have attracted interest in condensed
matter physics because their exotic non-Abelian quantum
statistics [1] form the basis for topological quantum com-
putation [2,3]. Potential electronic systems hosting
Majorana fermions include the � ¼ 5=2 quantum Hall
state [1,4], the p-wave superconductor Sr2RuO4 [5], and
topological insulator-superconductor structures [6–8]. In
the � ¼ 5=2 quantum Hall state, a Majorana bound state
is associated with the charge e=4 quasiparticle, and gapless
chiral Majorana fermions form the neutral sector of the
edge states. The e=4 charge allows the quasiparticle’s non-
Abelian statistics to be probed by measuring charge trans-
port in the edge states [9–11]. Recent experiments have
shown evidence for the quasiparticle charge e=4 [12,13],
and there are now intense efforts to prove or disprove their
non-Abelian nature.

Detecting Majorana fermions in superconductors is
more challenging because they are electrically neutral.
Tunneling experiments provide an indirect probe [14–
16]. Here we propose interference experiments to probe
neutral Majorana fermion edge states in superconductor-
magnet-topological insulator structures [6]. Our basic
setup, shown in Fig. 1, involves a grounded superconductor
surrounded by two insulating magnets with opposite out-
of-plane magnetization deposited on the surface of a
topological insulator. The magnetic domain wall gives
rise to 1D chiral Dirac fermions on the surface that
play the role of ‘‘leads’’ connecting the superconductor
to a source and drain. An electron incident from the source
splits into two Majorana fermions which take different
paths around the edge of the superconductor and then
recombine before going to the drain. We will show the
source-drain conductance probes the interference of the
Majorana fermions, forming a novel ‘‘Z2 interferometer.’’
We will also show that the transmission of Majorana
fermions through a ‘‘point contact’’ formed by a
Josephson junction between two superconductors can be

measured, and that the transmission can be tuned by con-
trolling the phase difference across the junction.
A topological insulator [17,18] has gapless surface states

that are topologically protected in the absence of time
reversal or gauge symmetry breaking fields. Breaking
time reversal symmetry either by an applied magnetic field
or by depositing an insulating magnetic material can open
an energy gap leading to a novel surface quantum Hall
effect with �xy ¼ �e2=2h [19,20]. Depositing a supercon-

ductor on the surface leads, via the proximity effect, to a
surface superconducting state that hosts Majorana fermi-
ons [6]. In view of the recent experimental discoveries of
topological insulator phases in BixSb1�x [21,22] and
Bi2Se3 [23], and the earlier experimental evidence of
good contact between superconducting Nb and BixSb1�x

[24], the experimental study of these novel gapped phases
is now possible.
The superconducting and magnetic phases of the surface

states, as well as the gapless states at interfaces between
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FIG. 1. An interferometer for Majorana fermions. Magnetic
(M) and superconducting (SC) materials are deposited on a
topological insulator. Chiral Majorana fermion edge states (de-
noted by a single arrow) circle the outer boundary of the
superconductor, and chiral Dirac fermion edge states (denoted
by the double arrow) are confined to the magnetic domain wall
connected to a source (S) and drain (D). A return path between
the drain and source is shown with the dashed line. When a
voltage is applied to the source electrons are split into two
Majorana fermions, allowing their Z2 interference phase �1 to
be probed by measuring the current in the drain.
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them, can be described with the Bogoliubov–de Gennes
(BdG) formalism. The Hamiltonian is [19] H ¼
�yH�=2, where � ¼ ½ðc "; c #Þ; ðc y

# ;�c y
" Þ�T and

H ¼ �z½vFẑ � ~�� ð�ir� eA�zÞ ���
þ ð��þ þ����Þ þM�z: (1)

Here c ";# are electron operators of the surface states which
are Kramers degenerate at k ¼ 0. ~� and ~� are Pauli
matrices in spin space and particle-hole space, and �� ¼
ð�x � i�yÞ=2. vF is the Fermi velocity, and � is the chemi-

cal potential. The first line in H describes free surface

states coupled to a vector potential A. �c y
" c

y
# þ H:c:

describes the superconducting proximity effect. Spatially

uniform � gives a gapped excitation spectrum Es
k ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�vFjkj ��Þ2 þ�2

p
. Mc y�zc describes the Zeeman

splitting due to the magnet. Spatially uniform M gives

Ez
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
Fjkj2 þM2

q
��, which is gapped when M>

�. The BdG Hamiltonian has particle-hole symmetry, ex-
pressed by f�;H g ¼ 0 where the particle-hole operator is
�� ¼ �y�y��. The eigenstates ��E with energy �E obey
��E ¼ ��E, and only the E � 0 half of the spectrum
represents independent excitations.

An interface between two half planes (y > 0 and y < 0)
with different mass terms gives rise to gapless 1D domain-
wall states. First consider a superconductor-magnet inter-
face modeled by � ¼ �0�ðyÞ and M ¼ M0�ð�yÞ.
Solving (1), we find one chiral branch of bound states
with a four component wave function �kðx; yÞ localized
near y ¼ 0. �k¼0 has zero energy and satisfies ��0 ¼ �0,
which fixes its phase up to a� sign. Using k � p theory the
eigenstates for small k are �kðx; yÞ ¼ expðikxÞ�0ðyÞ with
energy EðkÞ ¼ @vMk, where vM ¼ vFh�0j�z�yj�0i ¼
vF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��2=M2

0

q
=ð1þ�2=�2

0Þ. These define Bogoliubov

operators �k ¼
R
dxdy�kðx; yÞy�ðx; yÞ which satisfy

�y
k ¼ ��k. The continuum operators �ðxÞ � R

dk�ke
ikx

are Majorana fields, �yðxÞ ¼ �ðxÞ obeying the low energy
Hamiltonian H ¼ �i@vM�@x�.

To model a magnetic domain wall we take M ¼
M0 sgnðyÞ. We find a gapless branch of chiral edge states
between �xy ¼ �e2=2h. When expressed in the BdG for-

malism, two chiral branches of bound states with energy
EðkÞ � @vDk appear due to the double counting. For
EðkÞ> 0, the two states have the form fk 	 j�z ¼ 1i and
�f�k 	 j�z ¼ �1i, where fkðx; yÞ is a two component
wave function in the �z sector and �f ¼ �yf

� is the

time reversal operator. These correspond to the electron

operators cyk� and c�k�, respectively, where the spin state �
is an eigenstate of �y.

To analyze the device in Fig. 1, we employ the BCS
mean-field theory to calculate the transport current due to
quasiparticles. This is justified because the superconduct-
ing order parameter at the surface inherits its phase from
the bulk 3D superconductor, which behaves classically at

low temperature. When the source is biased at a subgap
voltage V 
 �0 the quasiparticles involved are exclu-
sively the gapless Majorana fermion edge states.
An electron incident from the source can be transmitted

to the drain as an electron, or converted to a hole by an
Andreev process in which charge 2e is absorbed into the
superconducting condensate. Before solving the general
source to drain transmission problem we will show that
the behavior at E ¼ 0 follows from a simple argument.
Scattering at the left trijunction, where the incident Dirac
fermion meets the superconductor, must transform an in-

cident E ¼ 0 electron cyL into a fermion c built from the
Majorana operators �1 and �2. The arbitrary sign of �1;2

allows us to choose c ¼ �1 þ i�2. Likewise, scattering at
the right trijunction transforms c into a fermion in the

right lead. This must be either cyR or cR. A superposition of
the two is not allowed because it is not a fermion operator.
To determine which occurs, we observe that when the size
of the superconductor shrinks continuously to zero, the left
and right lead seamlessly connect to each other. Adiabatic
continuity thus dictates that an incident E ¼ 0 electron is

transmitted as an electron, cyL ! cyR. When the ring en-
closes a quantized flux � ¼ nh=2e, this adiabatic argu-
ment breaks down. Instead, odd n introduces a branch cut
for one of the Majorana modes, i.e., �1 ! ��1. Thus,

when the ring encloses an odd number of flux quanta, cyL !
cR. An incident E ¼ 0 electron is converted to a hole.
To obtain the scattering probabilities at finite energy 0<

E 
 �, we use the BdG formalism to solve the scattering
problem in the limit that the size of the ring L is much
larger than the decay length of the Majorana edge states
into the bulk, which is of order maxð@vF=�0; @vF=M0Þ.
First consider the scattering at the left trijunction. A 2� 2
scattering matrix SðEÞ relates the two incoming states in
the left lead j�z ¼ �1i, which we denote e and h (for
electron and a hole), to the two outgoing Majorana edge
states �1 and �2 on the top and bottom of the ring,
ð�1; �2ÞT ¼ SðEÞðe; hÞT . To simplify the notation, we
have used the channel label to denote the amplitude of
the scattering states in the corresponding channel. Particle-
hole symmetry implies that SðEÞ ¼ S�ð�EÞ�x. At E ¼ 0,
this property, along with unitary SyS ¼ 1, allows S to be
chosen as

S ¼ 1ffiffiffi
2

p 1 1
i �i

� �
; (2)

so that cy ! ð�1 � i�2Þ=
ffiffiffi
2

p
. For E � 0 there will be

corrections to (2), which will be small when E 

ðvM=vFÞminð�0;M0Þ. These corrections vanish when the
junction has a mirror symmetry, so that H ð�yÞ ¼
M�1H ðyÞM with M ¼ i�y. The electron and hole
channels are then eigenstates of M with eigenvalue �i,
whereas M interchanges the Majorana edge states. This
leads to (2) at any energy. In the following we will assume
SðEÞ is well described by its low energy limit (2).
Next we study the propagation of the chiral Majorana

fermion. When there is no magnetic flux the wave function
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at E 
 �0 can be approximated by �ðl; sÞ ¼ �0ðsÞ�
expðikðEÞlÞ, where lðsÞ is the length along (perpendicular
to) the interface, and kðEÞ ¼ E=vM. In the presence of flux
� ¼ nh=2e, the superconducting phase � winds by 2	n
around the ring accompanied by a vector potential A ¼
r�. It is convenient to choose a gauge in which the spatial
variation of � is concentrated near the middle of the upper
semicircle. Away from this ‘‘scattering region,’’ the wave
function is the same as before. This problem can be solved
with a Uð2Þ gauge transformation that eliminates the spa-
tial variation of� and the nonzeroA. The wave function is
then simply the undisturbed wave function multiplied by
exp½i�z�ðlÞ=2�. For � ¼ nh=2e the chiral Majorana edge
mode �1 thus acquires an additional phase shift n	 across
the junction.

The scattering amplitude of the ring is found by com-
posing the scattering matrices:

e

h

" #
R ¼ S�1 ei	nþikl1 0

0 eikl2

� �
S

e
h

� �
L
: (3)

The current in the drain when the source is biased at
voltage V and the superconductor and drain are grounded is

I ¼ ð�1Þn e
h

Z 1

0
dE½fðE� eVÞ � fðEþ eVÞ� cos
ðEÞ;

(4)

where f is the Fermi-Dirac distribution function and 
 ¼
kðl1 � l2Þ � E�L=vM is the relative phase between two
paths of different lengths. Evaluating the integral we find

I ¼ ð�1Þn e
h

	kBT sinðeV�L=vMÞ
sinhð	kBT�L=vMÞ ; kBT; eV 
 �0:

(5)

At fixed bias, the current ‘‘oscillates’’ as a function of the
discrete magnetic flux nh=2e, reflecting the Aharonov-
Bohm phase for Majorana fermions, which takes values
�1. Our device thus functions as a ‘‘Z2 interferometer’’ for
Majorana fermions. The ‘‘visibility’’ of these oscillations
is suppressed below a temperature scale kBT�L � @vM=�L
due to thermal averaging. In addition, at finite bias voltage
the current oscillates as a function of V with a period
2	kBT�L=e due to the energy dependence of the relative
phase. That the oscillation persists to high bias voltages
without any damping is due to the absence of dephasing in
our calculation. A similar situation occurs in the electronic
Mach-Zehnder interferometer: the decay of the magnitude
of interference oscillation at high bias voltage is attributed
to dephasing processes [25]. Sources of dephasing in our
system include coupling of Majorana fermions with other
degrees of freedom, as well as interactions between
Majorana fermions. Since Majorana fermions are neutral,
we expect environmental coupling is weak. In addition, the
lowest order local interaction term within the Majorana
fermions is �ðxÞ@x�ðxÞ@2x�ðxÞ@3x�ðxÞ, which involves spa-
tial derivatives at sixth order and will be strongly sup-
pressed at low temperature. Thus there is reason to

expect the low temperature dephasing rate for the
Majorana fermion edge states will be smaller than that of
ordinary electrons.
We next study the transmission of Majorana fermions

across a Josephson junction between two superconductors,
shown in Fig. 2(a). The junction plays the role of a point
contact for Majorana fermions and can be characterized by
a scattering matrix relating incoming and outgoing
Majorana modes, �out

i ¼ S
pc
ij ðEÞ�in

j . Each superconductor

is connected to a source and drain by chiral electron modes
at magnetic domain walls. An incident electron from S1
splits into twoMajorana modes. One of the two is scattered
by the junction, and has amplitude t ¼ S

pc
11 to be trans-

mitted before recombining with its partner and going to
D1. Following the previous procedure, we calculate the
scattering matrix relating an incident fermion at S1 to an
outgoing fermion at D1 to obtain the current flowing to D1

when S1 is at voltage V and the other leads are grounded.

I ¼ e
Z 1

0
dE½fðE� eVÞ � fðEþ eVÞ�Re½tðEÞei
ðEÞ�;

(6)

where 
ðEÞ is the same as in (4). At E ¼ 0 particle-hole
symmetry constrains Spc to be a real Oð2Þ matrix describ-
ing the transmission t ¼ cos� and reflection r ¼ sin� such
that �out

1 þ i�out
2 ¼ ei�ð�in

1 þ i�in
2 Þ. At T ¼ 0 the conduc-

tance G ¼ ID1=VS1 ¼ te2=h directly measures the trans-
mission of the neutral Majorana fermions.
The transmission amplitude t can be controlled by ad-

justing the phase difference � of the Josephson junction.
Consider a simple model for tð�Þ.
H ¼ ð�1; �2Þ½�ivM�

z@x þ �ðxÞ cosð�=2Þ�y�ð�1; �2ÞT:
(7)

When �ðxÞ ¼ ��ðxÞ and �=vM 
 1, H describes super-
conductors weakly coupled by single electron tunneling at
a point [7,26,27]. When �ðxÞ ¼ �0 for x 2 ½0; L� and 0
otherwise, H becomes the low energy theory of a line

π 2π0
φ

0

1 0.5

ζ = 2

ζ = 5
20

tM M

M M

M M

SC1

SC2

φ

φ=0

S1

D2

D1

S2

1

r

t

0

0
φ

0

φ

(a) (b)

FIG. 2. (a) A point contact for neutral Majorana fermions
characterized by reflection and transmission amplitudes t and r
formed by a junction between two superconductors. Each super-
conductor is connected to a source and drain by chiral fermions
at a magnetic domain wall, allowing t to be measured with
charge transport. (b) Zero energy transmission of the point
contact as a function of phase � for different coupling strengths.
The insets indicate the limits of a weakly coupled point contact
(right) and a long line junction (left).
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junction [6]. The transmission amplitude at E ¼ 0 in this
model is

tð�Þ ¼ 1= cosh½ cosð�=2Þ�; (8)

with  ¼ R
dx�ðxÞ=2vM. Figure 2(b) shows tð�Þ for differ-

ent values of  . At� ¼ 	, the transmission is perfect. This
is guaranteed by gauge invariance. When � ! �þ 2	
one of the Majorana edge modes changes sign [7] so
rð�Þ ¼ �rð�þ 2	Þ. Thus, rð�Þ ¼ 0 and tð�Þ ¼ 1 for
some � 2 ½0; 2	�. For a symmetric junction this occurs
at � ¼ 	.

For a weakly coupled point contact [Fig. 2(b), right-hand
inset], tð�Þ is energy independent, but is only weakly
dependent on �. For a long line junction [Fig. 2(b), left-
hand inset], tð�Þ varies over a wide range of values be-
tween 0 and 1, but has a very narrow peak ���
@vM=�0L. In addition, near the peak the transmission
will be strongly energy dependent due to the small gap
when �� 	. It is desirable to engineer the size and
geometry of the Josephson junction in between these two
limits, so that tð�Þ has a well defined peak which can be
probed by the low temperature conductance.

It is worthwhile to compare the superconducting point
contact for Majorana fermions studied here with a point
contact in the � ¼ 5=2 quantum Hall effect. Our point
contact is precisely equivalent to the neutral sector of the
� ¼ 5=2 point contact, which has been described in terms
of the Ising boundary conformal field theory [28]. For � ¼
5=2, however, the physics is dominated by the backscat-
tering of charge e=4 quasiparticles, which is analogous to
quantum tunneling vortices across the superconductor in
our system. Since the superconducting phase is essentially
a classical variable, this process is strongly suppressed in a
superconducting point contact. Thus, unlike the � ¼ 5=2
problem, vortex backscattering does not lead to a crossover
to the weak tunneling limit.

The recently discovered topological insulator Bi2Se3
[23,29], with bulk gap �0:35 eV, is a promising material
to probe these states. Unlike Bi1�xSbx, its surface states
have a small Fermi surface that encloses a single Dirac
point. Photoemission experiments reveal a Fermi velocity
@vF � 0:3 eVnm and a Fermi energy �� 0:3 eV relative
to the Dirac point. The current materials are unintention-
ally doped, with the bulk Fermi energy in the conduction
band. If the material can be compensated either by doping
or gating, it is likely that the surface Fermi energy can be
made much closer to the Dirac point. This is important
because achieving the magnetic gapped state requires a
field M>�. Moreover, the k � p theory predicts that the
Majorana velocity vM is suppressed when �0 
 �, reduc-
ing the temperature scale T�L required to observe the
signature of Majorana fermions. Our model calculation
gives vM � vFð�0=�Þ2. Assuming a superconductor can
be found that gives a proximity induced gap �0 �
0:1 meV, we require size L > @vF=�0 � 3 �m. If ��

1 meV and �L� 1 �m, then T�L � 30 mK. T�L can be
larger if the path difference �L can be finely tuned.
To conclude, we have proposed experiments to probe the

interference and transmission of neutral Majorana fermi-
ons with charge transport. We hope they offer a first step
towards the more ambitious goal [6] of detecting the non-
Abelian statistics of individual Majorana bound states and
using them for quantum computation.
We thank Carlo Beenakker for an insightful discussion.

This work was supported by NSF Grant No. DMR-
0605066 and ACS PRF Grant No. 44776-AC10.
Note added.—Recently, Akhmerov et al. [30] indepen-

dently studied an interferometer similar to Fig. 1.
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