61 research outputs found

    Antioxidant Role of Vitamin C in Alleviating the Reproductive Toxicity of Lead Acetate in Male Rats

    Get PDF
    Environmental pollution with heavy metals represents global problem. One of these heavy metals is the lead acetate that emits from many industries such as paint, ceramics, lead containing pipes and plastics led to a manifold rise in the occurrence of free lead in biological systems and the environment. Exposure to lead acetate affects most of the body’s organs especially testes since it has a unique vascular system. Therefore, the present study aimed to evaluate the protective effect of vitamin C against lead acetate induced testicular toxicity in rats. Thirty male adult albino rats were used in this study. They were equally divided into three groups; group I "control group", group II "lead acetate treated group" and group III "lead acetate and vitamin C treated group". Administration of lead acetate (20 mg /kg body weight for 8 successive weeks) resulted in a significant decrease in serum level of testosterone. It also led to a significant increase in the testicular tissue homogenate concentration of MDA and a significant decrease in GSH concentration and catalase activity. Administration of vitamin C (20 mg/kg body weight) with lead acetate for 8 successive weeks succeeded in improving semen quality and antioxidant enzyme concentrations of testes. It can be concluded that lead acetate testicular toxicity in rats led to disturbance in serum level of the main male reproductive hormone and increased testicular contents of oxidative markers and decreased the antioxidant markers. The use of vitamin C improved these changes.  &nbsp

    Biochemical Evaluation of some Natural Feed Additives against Dexamethasone-induced Metabolic Alterations in Rabbits

    Get PDF
    Glucocorticoid therapy is limited by numerous metabolic adverse effects associated with long term exposure to excess doses. Therefore, the present study aims to determine the possible protective effects of date palm and/or Saccharomyces cerevisiae probiotics on dexamethasone-induced metabolic changes in rabbits. 25 healthy male white New Zealand rabbits were grouped into group 1 (control), group 2 (2 mg/kg bw/day dexamethasone I/M), group 3 (0.5 g/kg/day date palm flesh+2 mg/kg bw/day dexamethasone I/M), group 4 (1g/kg/day S. cerevisiae probiotic + 2 mg/kg bw/day dexamethasone I/M), group 5 (date palm flesh + S. cerevisiae probiotic + dexamethasone at the aforementioned doses). Dexamethasone injection resulted in marked increases (p≤0.05) in hepatic MDA concentration and catalase activity, as well as significant decreases in hepatic GSH concentration and body weight gain. The serum levels of glucose, lipid profile (TG, cholesterol, VLDL, LDL/HDL risk ratio), and liver function biomarkers (serum total proteins, albumin, ALT, ALP) showed significant variations (P≤0.05) between control and dexamethasone treated group. The ameliorative effect of date palm fruit and/or probiotics (S. cerevisiae) was markedly indicated by restoration of these tested parameters to near normalcy. Therefore, the co-treatment with date or S. cerevisiae could be considered of great interest as potential feed additives for reduction of the adverse metabolic effects induced by dexamethasone in rabbits

    The evolving SARS-CoV-2 epidemic in Africa: insights from rapidly expanding genomic surveillance

    Get PDF
    Investment in SARS-CoV-2 sequencing in Africa over the past year has led to a major increase in the number of sequences generated, now exceeding 100,000 genomes, used to track the pandemic on the continent. Our results show an increase in the number of African countries able to sequence domestically, and highlight that local sequencing enables faster turnaround time and more regular routine surveillance. Despite limitations of low testing proportions, findings from this genomic surveillance study underscore the heterogeneous nature of the pandemic and shed light on the distinct dispersal dynamics of Variants of Concern, particularly Alpha, Beta, Delta, and Omicron, on the continent. Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve, while the continent faces many emerging and re-emerging infectious disease threats. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance.

    Get PDF
    Investment in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing in Africa over the past year has led to a major increase in the number of sequences that have been generated and used to track the pandemic on the continent, a number that now exceeds 100,000 genomes. Our results show an increase in the number of African countries that are able to sequence domestically and highlight that local sequencing enables faster turnaround times and more-regular routine surveillance. Despite limitations of low testing proportions, findings from this genomic surveillance study underscore the heterogeneous nature of the pandemic and illuminate the distinct dispersal dynamics of variants of concern-particularly Alpha, Beta, Delta, and Omicron-on the continent. Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve while the continent faces many emerging and reemerging infectious disease threats. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Socializing One Health: an innovative strategy to investigate social and behavioral risks of emerging viral threats

    Get PDF
    In an effort to strengthen global capacity to prevent, detect, and control infectious diseases in animals and people, the United States Agency for International Development’s (USAID) Emerging Pandemic Threats (EPT) PREDICT project funded development of regional, national, and local One Health capacities for early disease detection, rapid response, disease control, and risk reduction. From the outset, the EPT approach was inclusive of social science research methods designed to understand the contexts and behaviors of communities living and working at human-animal-environment interfaces considered high-risk for virus emergence. Using qualitative and quantitative approaches, PREDICT behavioral research aimed to identify and assess a range of socio-cultural behaviors that could be influential in zoonotic disease emergence, amplification, and transmission. This broad approach to behavioral risk characterization enabled us to identify and characterize human activities that could be linked to the transmission dynamics of new and emerging viruses. This paper provides a discussion of implementation of a social science approach within a zoonotic surveillance framework. We conducted in-depth ethnographic interviews and focus groups to better understand the individual- and community-level knowledge, attitudes, and practices that potentially put participants at risk for zoonotic disease transmission from the animals they live and work with, across 6 interface domains. When we asked highly-exposed individuals (ie. bushmeat hunters, wildlife or guano farmers) about the risk they perceived in their occupational activities, most did not perceive it to be risky, whether because it was normalized by years (or generations) of doing such an activity, or due to lack of information about potential risks. Integrating the social sciences allows investigations of the specific human activities that are hypothesized to drive disease emergence, amplification, and transmission, in order to better substantiate behavioral disease drivers, along with the social dimensions of infection and transmission dynamics. Understanding these dynamics is critical to achieving health security--the protection from threats to health-- which requires investments in both collective and individual health security. Involving behavioral sciences into zoonotic disease surveillance allowed us to push toward fuller community integration and engagement and toward dialogue and implementation of recommendations for disease prevention and improved health security

    Genetic and antigenic characterization of avian influenza H9N2 viruses during 2016 in Iraq

    Get PDF
    Background: Little is known about the antigenic and genetic characteristics of influenza A viruses (IAVs) circulating in poultry in Iraq. Objective: This study describes the genetic and antigenic characteristics of the detected avian influenza (AI) H9N2 viruses in Iraq during 2016. Methods: Full genome sequences of two H9N2 viruses isolated from chickens in Iraq during 2016 were assembled. Antigenic analyses of Iraqi H9N2 viruses and contemporary H9N2 isolates from Lebanon and Egypt were performed by hemagglutination inhibition (HI) assay. Results: Phylogenetic analysis of surface glycoproteins and internal segments (PB2, PA, NP, M, and NS) indicated that the Iraqi H9N2 viruses were closely related to G1-like lineage of H9N2 viruses isolated from Pakistan and Iran indicating possible epidemiological links. The PB1 segments of the current characterized H9N2 viruses were not related to any of the previously characterized H9N2 viruses and closely similar to H7N7 virus detected in chickens in Germany in 2015. Multiple genetic determinants for virulence and mammalian transmission were characterized in the characterized H9N2 viruses in Iraq. The antigenic analysis showed a close relationship between H9N2 viruses in Iraq and contemporary H9N2 viruses in Egypt and Lebanon. Like H9N2 viruses, Iraqis H9N2 virus bound to human-like receptor rather than avian-like receptor thus represent a public health risk. Conclusion: Active surveillance of AIV in poultry and migratory birds should be adopted to monitor the genesis and emergence of new viruses in Iraq

    Middle East Respiratory Syndrome Coronavirus (MERS-CoV): State of the Science

    No full text
    Coronaviruses belong to a large family of viruses that can cause disease outbreaks ranging from the common cold to acute respiratory syndrome. Since 2003, three zoonotic members of this family evolved to cross species barriers infecting humans and resulting in relatively high case fatality rates (CFR). Compared to Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV, CFR = 10%) and pandemic Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2, CFR = 6%), the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) has scored the highest CFR (approximately 35%). In this review, we systematically summarize the current state of scientific knowledge about MERS-CoV, including virology and origin, epidemiology, zoonotic mode of transmission, and potential therapeutic or prophylactic intervention modalities

    The Antidiabetic Effects and Modes of Action of the <i>Balanites aegyptiaca</i> Fruit and Seed Aqueous Extracts in NA/STZ-Induced Diabetic Rats

    No full text
    Diabetes mellitus (DM) is a chronic metabolic disorder that threatens human health. Medicinal plants have been a source of wide varieties of pharmacologically active constituents and used extensively as crude extracts or as pure compounds for treating various disease conditions. Thus, the aim of this study is to assess the anti-hyperglycemic and anti-hyperlipidemic effects and the modes of action of the aqueous extracts of the fruits and seeds of Balanites aegyptiaca (B. aegyptiaca) in nicotinamide (NA)/streptozotocin (STZ)-induced diabetic rats. Gas chromatography–mass spectrometry analysis indicated that 3,4,6-tri-O-methyl-d-glucose and 9,12-octadecadienoic acid (Z,Z)- were the major components of the B. aegyptiaca fruit and seed extracts, respectively. A single intraperitoneal injection of STZ (60 mg/kg body weight (b.w.)) 15 min after intraperitoneal NA injection (60 mg/kg b.w.) was administered to induce type 2 DM. After induction was established, the diabetic rats were treated with the B. aegyptiaca fruit and seed aqueous extracts (200 mg/kg b.w./day) via oral gavage for 4 weeks. As a result of the treatments with the B. aegyptiaca fruit and seed extracts, the treated diabetic-treated rats exhibited a significant improvement in the deleterious effects on oral glucose tolerance; serum insulin, and C-peptide levels; liver glycogen content; liver glucose-6-phosphatase and glycogen phosphorylase activities; serum lipid profile; serum free fatty acid level; liver lipid peroxidation; glutathione content and anti-oxidant enzyme (glutathione peroxidase, glutathione-S-transferase, and superoxide dismutase) activities; and the mRNA expression of the adipose tissue expression of the insulin receptor β-subunit. Moreover, the treatment with fruit and seed extracts also produced a remarkable improvement of the pancreatic islet architecture and integrity and increased the islet size and islet cell number. In conclusion, the B. aegyptiaca fruit and seed aqueous extracts exhibit potential anti-hyperglycemic and anti-hyperlipidemic effects, which may be mediated by increasing the serum insulin levels, decreasing insulin resistance, and enhancing the anti-oxidant defense system in diabetic rats
    • …
    corecore