28 research outputs found

    Bayesian analysis of the prevalence bias: learning and predicting from imbalanced data

    Get PDF
    Datasets are rarely a realistic approximation of the target population. Say, prevalence is misrepresented, image quality is above clinical standards, etc. This mismatch is known as sampling bias. Sampling biases are a major hindrance for machine learning models. They cause significant gaps between model performance in the lab and in the real world. Our work is a solution to prevalence bias. Prevalence bias is the discrepancy between the prevalence of a pathology and its sampling rate in the training dataset, introduced upon collecting data or due to the practioner rebalancing the training batches. This paper lays the theoretical and computational framework for training models, and for prediction, in the presence of prevalence bias. Concretely a bias-corrected loss function, as well as bias-corrected predictive rules, are derived under the principles of Bayesian risk minimization. The loss exhibits a direct connection to the information gain. It offers a principled alternative to heuristic training losses and complements test-time procedures based on selecting an operating point from summary curves. It integrates seamlessly in the current paradigm of (deep) learning using stochastic backpropagation and naturally with Bayesian models

    Utilisation of an operative difficulty grading scale for laparoscopic cholecystectomy

    Get PDF
    Background A reliable system for grading operative difficulty of laparoscopic cholecystectomy would standardise description of findings and reporting of outcomes. The aim of this study was to validate a difficulty grading system (Nassar scale), testing its applicability and consistency in two large prospective datasets. Methods Patient and disease-related variables and 30-day outcomes were identified in two prospective cholecystectomy databases: the multi-centre prospective cohort of 8820 patients from the recent CholeS Study and the single-surgeon series containing 4089 patients. Operative data and patient outcomes were correlated with Nassar operative difficultly scale, using Kendall’s tau for dichotomous variables, or Jonckheere–Terpstra tests for continuous variables. A ROC curve analysis was performed, to quantify the predictive accuracy of the scale for each outcome, with continuous outcomes dichotomised, prior to analysis. Results A higher operative difficulty grade was consistently associated with worse outcomes for the patients in both the reference and CholeS cohorts. The median length of stay increased from 0 to 4 days, and the 30-day complication rate from 7.6 to 24.4% as the difficulty grade increased from 1 to 4/5 (both p < 0.001). In the CholeS cohort, a higher difficulty grade was found to be most strongly associated with conversion to open and 30-day mortality (AUROC = 0.903, 0.822, respectively). On multivariable analysis, the Nassar operative difficultly scale was found to be a significant independent predictor of operative duration, conversion to open surgery, 30-day complications and 30-day reintervention (all p < 0.001). Conclusion We have shown that an operative difficulty scale can standardise the description of operative findings by multiple grades of surgeons to facilitate audit, training assessment and research. It provides a tool for reporting operative findings, disease severity and technical difficulty and can be utilised in future research to reliably compare outcomes according to case mix and intra-operative difficulty

    Population‐based cohort study of outcomes following cholecystectomy for benign gallbladder diseases

    Get PDF
    Background The aim was to describe the management of benign gallbladder disease and identify characteristics associated with all‐cause 30‐day readmissions and complications in a prospective population‐based cohort. Methods Data were collected on consecutive patients undergoing cholecystectomy in acute UK and Irish hospitals between 1 March and 1 May 2014. Potential explanatory variables influencing all‐cause 30‐day readmissions and complications were analysed by means of multilevel, multivariable logistic regression modelling using a two‐level hierarchical structure with patients (level 1) nested within hospitals (level 2). Results Data were collected on 8909 patients undergoing cholecystectomy from 167 hospitals. Some 1451 cholecystectomies (16·3 per cent) were performed as an emergency, 4165 (46·8 per cent) as elective operations, and 3293 patients (37·0 per cent) had had at least one previous emergency admission, but had surgery on a delayed basis. The readmission and complication rates at 30 days were 7·1 per cent (633 of 8909) and 10·8 per cent (962 of 8909) respectively. Both readmissions and complications were independently associated with increasing ASA fitness grade, duration of surgery, and increasing numbers of emergency admissions with gallbladder disease before cholecystectomy. No identifiable hospital characteristics were linked to readmissions and complications. Conclusion Readmissions and complications following cholecystectomy are common and associated with patient and disease characteristics

    The development and validation of a scoring tool to predict the operative duration of elective laparoscopic cholecystectomy

    Get PDF
    Background: The ability to accurately predict operative duration has the potential to optimise theatre efficiency and utilisation, thus reducing costs and increasing staff and patient satisfaction. With laparoscopic cholecystectomy being one of the most commonly performed procedures worldwide, a tool to predict operative duration could be extremely beneficial to healthcare organisations. Methods: Data collected from the CholeS study on patients undergoing cholecystectomy in UK and Irish hospitals between 04/2014 and 05/2014 were used to study operative duration. A multivariable binary logistic regression model was produced in order to identify significant independent predictors of long (> 90 min) operations. The resulting model was converted to a risk score, which was subsequently validated on second cohort of patients using ROC curves. Results: After exclusions, data were available for 7227 patients in the derivation (CholeS) cohort. The median operative duration was 60 min (interquartile range 45–85), with 17.7% of operations lasting longer than 90 min. Ten factors were found to be significant independent predictors of operative durations > 90 min, including ASA, age, previous surgical admissions, BMI, gallbladder wall thickness and CBD diameter. A risk score was then produced from these factors, and applied to a cohort of 2405 patients from a tertiary centre for external validation. This returned an area under the ROC curve of 0.708 (SE = 0.013, p  90 min increasing more than eightfold from 5.1 to 41.8% in the extremes of the score. Conclusion: The scoring tool produced in this study was found to be significantly predictive of long operative durations on validation in an external cohort. As such, the tool may have the potential to enable organisations to better organise theatre lists and deliver greater efficiencies in care

    The Cholecystectomy As A Day Case (CAAD) Score: A Validated Score of Preoperative Predictors of Successful Day-Case Cholecystectomy Using the CholeS Data Set

    Get PDF
    Background Day-case surgery is associated with significant patient and cost benefits. However, only 43% of cholecystectomy patients are discharged home the same day. One hypothesis is day-case cholecystectomy rates, defined as patients discharged the same day as their operation, may be improved by better assessment of patients using standard preoperative variables. Methods Data were extracted from a prospectively collected data set of cholecystectomy patients from 166 UK and Irish hospitals (CholeS). Cholecystectomies performed as elective procedures were divided into main (75%) and validation (25%) data sets. Preoperative predictors were identified, and a risk score of failed day case was devised using multivariate logistic regression. Receiver operating curve analysis was used to validate the score in the validation data set. Results Of the 7426 elective cholecystectomies performed, 49% of these were discharged home the same day. Same-day discharge following cholecystectomy was less likely with older patients (OR 0.18, 95% CI 0.15–0.23), higher ASA scores (OR 0.19, 95% CI 0.15–0.23), complicated cholelithiasis (OR 0.38, 95% CI 0.31 to 0.48), male gender (OR 0.66, 95% CI 0.58–0.74), previous acute gallstone-related admissions (OR 0.54, 95% CI 0.48–0.60) and preoperative endoscopic intervention (OR 0.40, 95% CI 0.34–0.47). The CAAD score was developed using these variables. When applied to the validation subgroup, a CAAD score of ≀5 was associated with 80.8% successful day-case cholecystectomy compared with 19.2% associated with a CAAD score >5 (p < 0.001). Conclusions The CAAD score which utilises data readily available from clinic letters and electronic sources can predict same-day discharges following cholecystectomy

    Fully-automated deep learning slice-based muscle estimation from CT images for sarcopenia assessment

    Get PDF
    Objective: To demonstrate the effectiveness of using a deep learning-based approach for a fully automated slice-based measurement of muscle mass for assessing sarcopenia on CT scans of the abdomen without any case exclusion criteria. Materials and Methods: This retrospective study was conducted using a collection of public and privately available CT images (n = 1070). The method consisted of two stages: slice detection from a CT volume and single-slice CT segmentation. Both stages used Fully Convolutional Neural Networks (FCNN) and were based on a UNet-like architecture. Input data consisted of CT volumes with a variety of fields of view. The output consisted of a segmented muscle mass on a CT slice at the level of L3 vertebra. The muscle mass is segmented into erector spinae, psoas, and rectus abdominus muscle groups. The output was tested against manual ground-truth segmentation by an expert annotator. Results: 3-fold cross validation was used to evaluate the proposed method. The slice detection cross validation error was 1.41+-5.02 (in slices). The segmentation cross validation Dice overlaps were 0.97+-0.02, 0.95+-0.04, 0.94+-0.04 for erector spinae, psoas, and rectus abdominus, respectively, and 0.96+-0.02 for the combined muscle mass. Conclusion: A deep learning approach to detect CT slices and segment muscle mass to perform slice-based analysis of sarcopenia is an effective and promising approach. The use of FCNN to accurately and efficiently detect a slice in CT volumes with a variety of fields of view, occlusions, and slice thicknesses was demonstrated

    Automatic L3 slice detection in 3D CT images using fully-convolutional networks

    No full text
    The analysis of single CT slices extracted at the third lumbar vertebra (L3) has garnered significant clinical interest in the past few years, in particular in regards to quantifying sarcopenia (muscle loss). In this paper, we propose an efficient method to automatically detect the L3 slice in 3D CT images. Our method works with images with a variety of fields of view, occlusions, and slice thicknesses. 3D CT images are first converted into 2D via Maximal Intensity Projection (MIP), reducing the dimensionality of the problem. The MIP images are then used as input to a 2D fully-convolutional network to predict the L3 slice locations in the form of 2D confidence maps. In addition we propose a variant architecture with less parameters allowing 1D confidence map prediction and slightly faster prediction time without loss of accuracy. Quantitative evaluation of our method on a dataset of 1006 3D CT images yields a median error of 1mm, similar to the inter-rater median error of 1mm obtained from two annotators, demonstrating the effectiveness of our method in efficiently and accurately detecting the L3 slice

    Bayesian sampling bias correction: training with the right loss function

    Get PDF
    We derive a family of loss functions to train models in the presence of sampling bias. Examples are when the prevalence of a pathology differs from its sampling rate in the training dataset, or when a machine learning practioner rebalances their training dataset. Sampling bias causes large discrepancies between model performance in the lab and in more realistic settings. It is omnipresent in medical imaging applications, yet is often overlooked at training time or addressed on an ad-hoc basis. Our approach is based on Bayesian risk minimization. For arbitrary likelihood models we derive the associated bias corrected loss for training, exhibiting a direct connection to information gain. The approach integrates seamlessly in the current paradigm of (deep) learning using stochastic backpropagation and naturally with Bayesian models. We illustrate the methodology on case studies of lung nodule malignancy grading

    Robust supervoxel matching combining mid-level spectral and context-rich features

    No full text
    International audienceThis paper presents an innovative way to reach accurate semi-dense registration between images based on robust matching of structural entities. The proposed approach relies on a decomposition of images into visual primitives called supervoxels generated by aggregating adjacent voxels sharing similar characteristics. Two new categories of features are estimated at the supervoxel extent: mid-level spectral features relying on a spectral method applied on supervoxel graphs to capture the non-linear modes of intensity displacements, and mid-level context-rich features describing the broadened spatial context on the resulting spectral representations. Accurate supervoxel pairings are established by nearest neighbor search on these newly designed features. The effectiveness of the approach is demonstrated against state-of-the-art methods for semi-dense longitudinal registration of abdominal CT images, relying on liver label propagation and consistency assessment
    corecore