200 research outputs found

    Clinical management of patients with genetic obesity during COVID-19 pandemic: position paper of the ESE Growth & Genetic Obesity COVID-19 Study Group and Rare Endo-ERN main thematic group on Growth and Obesity

    Get PDF
    This article aims to provide guidance on prevention and treatment of COVID-19 in patients with genetic obesity. Key principals of the management of patients with genetic obesity during COVID-19 pandemic for patients that have contracted COVID-19 are to be aware of: possible adrenal insufficiency (e.g., POMC deficiency, PWS); a more severe course in patients with concomitant immunodeficiency (e.g., LEP and LEPR deficiency), although defective leptin signalling could also be protective against the pro-inflammatory phenotype of COVID-19; disease severity being masked by insufficient awareness of symptoms in syndromic obesity patients with intellectual deficit (in particular PWS); to adjust medication dose to increased body size, preferably use dosing in m2; the high risk of malnutrition in patients with Sars-Cov2 infection, even in case of obesity. Key principals of the obesity management during the pandemic are to strive for optimal obesity management and a healthy lifestyle within the possibilities of the regulations to prevent weight (re)gain and to address anxiety within consultations, since prevalence of anxiety for COVID-19 is underestimated.Transplantation and immunomodulatio

    International Consensus Guideline on Small for Gestational Age (SGA): Etiology and Management from Infancy to Early Adulthood

    Get PDF
    : This International Consensus Guideline was developed by experts in the field of SGA of 10 pediatric endocrine societies worldwide. A consensus meeting was held and 1300 articles formed the basis for discussions. All experts voted about the strengths of the recommendations. The guideline gives new and clinically relevant insights into the etiology of short stature after SGA birth, including novel knowledge about (epi)genetic causes. Besides, it presents long-term consequences of SGA birth and new treatment options, including treatment with gonadotropin-releasing hormone agonist (GnRHa) in addition to growth hormone (GH) treatment, and the metabolic and cardiovascular health of young adults born SGA after cessation of childhood-GH-treatment in comparison with appropriate control groups. To diagnose SGA, accurate anthropometry and use of national growth charts are recommended. Follow-up in early life is warranted and neurodevelopment evaluation in those at risk. Excessive postnatal weight gain should be avoided, as this is associated with an unfavorable cardio-metabolic health profile in adulthood. Children born SGA with persistent short stature < -2.5 SDS at age 2 years or < -2 SDS at age of 3-4 years, should be referred for diagnostic work-up. In case of dysmorphic features, major malformations, microcephaly, developmental delay, intellectual disability and/or signs of skeletal dysplasia, genetic testing should be considered. Treatment with 0.033-0.067 mg GH/kg/day is recommended in case of persistent short stature at age of 3-4 years. Adding GnRHa treatment could be considered when short adult height is expected at pubertal onset. All young adults born SGA require counseling to adopt a healthy lifestyle

    Postnatal Pancreatic Islet β Cell Function and Insulin Sensitivity at Different Stages of Lifetime in Rats Born with Intrauterine Growth Retardation

    Get PDF
    Epidemiological studies have linked intrauterine growth retardation (IUGR) to the metabolic diseases, consisting of insulin resistance, type 2 diabetes, obesity and coronary artery disease, during adult life. To determine the internal relationship between IUGR and islet β cell function and insulin sensitivity, we established the IUGR model by maternal nutrition restriction during mid- to late-gestation. Glucose tolerance test and insulin tolerance test(ITT) in vivo and glucose stimulated insulin secretion(GSIS) test in vitro were performed at different stages in IUGR and normal groups. Body weight, pancreas weight and pancreas/body weight of IUGR rats were much lower than those in normal group before 3 weeks of age. While the growth of IUGR rats accelerated after 3 weeks, pancreas weight and pancreas/body weight remained lower till 15 weeks of age. In the newborns, the fasting glucose and insulin levels of IUGR rats were both lower than those of controls, whereas glucose levels at 120 and 180 min after glucose load were significantly higher in IUGR group. Between 3 and 15 weeks of age, both the fasting glucose and insulin levels were elevated and the glucose tolerance was impaired with time in IUGR rats. At age 15 weeks, the area under curve of insulin(AUCi) after glucose load in IUGR rats elevated markedly. Meanwhile, the stimulating index of islets in IUGR group during GSIS test at age 15 weeks was significantly lower than that of controls. ITT showed no significant difference in two groups before 7 weeks of age. However, in 15-week-old IUGR rats, there was a markedly blunted glycemic response to insulin load compared with normal group. These findings demonstrate that IUGR rats had both impaired pancreatic development and deteriorated glucose tolerance and insulin sensitivity, which would be the internal causes why they were prone to develop type 2 diabetes

    IGF2 stimulates fetal growth in a sex- and organ-dependent manner

    Get PDF
    BackgroundInsulin-like growth factor 2 (IGF2) is a key determinant of fetal growth, and the altered expression of IGF2 is implicated in fetal growth disorders and maternal metabolic derangements including gestational diabetes. Here we studied how increased levels of IGF2 in late pregnancy affect fetal growth.MethodsWe employed a rat model of repeated intrafetal IGF2 administration in late pregnancy, i.e., during GD19-GD21, and measured the consequences on fetal organ weight and expression of insulin/IGF-axis components.ResultsIGF2 treatment tended to increase fetal weight, but only weight increase of the fetal stomach reached significance (+33±9%; P<0.01). Sex-dependent data analysis revealed a sexual dimorphism of IGF2 action. In male fetuses, IGF2 administration significantly increased fetal weight (+13±3%; P<0.05) and weight of fetal stomach (+42±10%; P<0.01), intestine (+26±5%; P<0.05), liver (+13±4%; P<0.05), and pancreas (+25±8%; P<0.05). Weights of heart, lungs, and kidneys were unchanged. In female fetuses, IGF2 increased only stomach weight (+26±9%; P<0.05). Furthermore, gene expression of insulin/IGF axis in the heart, lungs, liver, and stomach was more sensitive toward IGF2 treatment in male than in female fetuses.ConclusionData suggest that elevated circulating IGF2 in late pregnancy predominantly stimulates organ growth of the digestive system, and male fetuses are more susceptible toward the IGF2 effects than female fetuses.Fil: White, Verónica. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; ArgentinaFil: Jawerbaum, Alicia Sandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; ArgentinaFil: Mazzucco, María Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; ArgentinaFil: Gauster, Martin. Medizinische Universität Graz; AustriaFil: Desoye, Gernot. Medizinische Universität Graz; AustriaFil: Hiden, Ursula. Medizinische Universität Graz; Austri

    The impact of exercise on thyroid hormone metabolism in children and adolescents

    No full text
    Thyroid hormones are important regulators of energy metabolism and may influence energy processes during physical exercise. There are controversial results concerning thyroid hormone metabolism during strenuous exercise in adult athletes and only scant data concerning the impact of strenuous exercise on thyroid hormone metabolism in children and adolescents. Although some studies demonstrate a transient change in thyroid hormones during intense physical performance, most studies agree that these changes are of minor impact, practically reflecting the relative negative energy balance during strenuous exercise. This state of hypometabolism during intense physical performance has also been confirmed in highly trained female young athletes, who may be also characterized by reproductive axis dysfunction, manifested either as luteal-phase deficiency or amenorrhea, alongside the typical constellation of low T3, insulin and leptin levels. More importantly, strenuous exercise during childhood or adolescence is mostly accompanied by a delay of skeletal maturation, and height and may have a long-lasting negative effect on growth and acquisition of maximum bone mass. In conclusion, although thyroid hormones are only transiently or insignificantly changed during strenuous exercise, adequate caloric intake should be guaranteed in highly performing young athletes in order to counteract the relative negative energy balance and prevent alterations in endocrine-metabolic profile. Moreover, when growth and pubertal progression in very young athletes are significantly impaired, a reduction in the intensity of the physical exercise should be advocated in order to guarantee better final height and adequate acquisition of bone mass. © Georg Thieme Verlag KG Stuttgart
    corecore