67 research outputs found

    Investigation of Environmental Factors Influencing the Deterioration of Nikka Stone in Koshien Hall

    Get PDF
    Environmental factors influencing the deterioration of Nikka Stone used in Koshien Hall were investigated through field surveys of current conditions. The main results obtained were as follows: 1. Deterioration of Nikka Stone used in Koshien Hall was classified into three categories: algal contamination, detachment, and salt efflorescence. 2. There are several possible causes of detachment, including freezing/thawing cycles caused by high stone-water content and high concentration of evaporation from the surface of water from the surroundings, salt efflorescence, and so on. 3. Small quantities of rainfall and sunshine can contribute to algal growth

    理科指導法において「授業UD」に基づく授業改善の試み

    Get PDF
    本研究の目的は,理科指導法での授業分析において,授業UD を取り入れ,理科の授業力量に関する学びの実態や課題について検討を行い,効果的な指導法を探ることである。学生のアンケートと振り返りの分析を行なった結果,次のことが分かった。(1)模擬授業を実践すること以上に,模擬授業を分析することによる学びが大きい。模擬授業の分析に授業UD の視点を取り入れることによって,授業分析の視点を手にするとともに,授業UD が授業を省察する足場となっている。(2)「視覚化」「焦点化」「共有化」等を取り入れることによって,「付箋紙による授業評価」「ミニホワイトボードによる討論」「ホワイトボードによる整理」等,授業分析・検討をより深める支援を実現できた。授業UD の視点を授業に取り入れることによって,教師が授業改善を行う手立てとなることが明らかとなった。教師の力量形成における授業UD の意味は大変大きいと考える

    Predicting mostly disordered proteins by using structure-unknown protein data

    Get PDF
    BACKGROUND: Predicting intrinsically disordered proteins is important in structural biology because they are thought to carry out various cellular functions even though they have no stable three-dimensional structure. We know the structures of far more ordered proteins than disordered proteins. The structural distribution of proteins in nature can therefore be inferred to differ from that of proteins whose structures have been determined experimentally. We know many more protein sequences than we do protein structures, and many of the known sequences can be expected to be those of disordered proteins. Thus it would be efficient to use the information of structure-unknown proteins in order to avoid training data sparseness. We propose a novel method for predicting which proteins are mostly disordered by using spectral graph transducer and training with a huge amount of structure-unknown sequences as well as structure-known sequences. RESULTS: When the proposed method was evaluated on data that included 82 disordered proteins and 526 ordered proteins, its sensitivity was 0.723 and its specificity was 0.977. It resulted in a Matthews correlation coefficient 0.202 points higher than that obtained using FoldIndex, 0.221 points higher than that obtained using the method based on plotting hydrophobicity against the number of contacts and 0.07 points higher than that obtained using support vector machines (SVMs). To examine robustness against training data sparseness, we investigated the correlation between two results obtained when the method was trained on different datasets and tested on the same dataset. The correlation coefficient for the proposed method is 0.14 higher than that for the method using SVMs. When the proposed SGT-based method was compared with four per-residue predictors (VL3, GlobPlot, DISOPRED2 and IUPred (long)), its sensitivity was 0.834 for disordered proteins, which is 0.052–0.523 higher than that of the per-residue predictors, and its specificity was 0.991 for ordered proteins, which is 0.036–0.153 higher than that of the per-residue predictors. The proposed method was also evaluated on data that included 417 partially disordered proteins. It predicted the frequency of disordered proteins to be 1.95% for the proteins with 5%–10% disordered sequences, 1.46% for the proteins with 10%–20% disordered sequences and 16.57% for proteins with 20%–40% disordered sequences. CONCLUSION: The proposed method, which utilizes the information of structure-unknown data, predicts disordered proteins more accurately than other methods and is less affected by training data sparseness

    SAHG, a comprehensive database of predicted structures of all human proteins

    Get PDF
    Most proteins from higher organisms are known to be multi-domain proteins and contain substantial numbers of intrinsically disordered (ID) regions. To analyse such protein sequences, those from human for instance, we developed a special protein-structure-prediction pipeline and accumulated the products in the Structure Atlas of Human Genome (SAHG) database at http://bird.cbrc.jp/sahg. With the pipeline, human proteins were examined by local alignment methods (BLAST, PSI-BLAST and Smith–Waterman profile–profile alignment), global–local alignment methods (FORTE) and prediction tools for ID regions (POODLE-S) and homology modeling (MODELLER). Conformational changes of protein models upon ligand-binding were predicted by simultaneous modeling using templates of apo and holo forms. When there were no suitable templates for holo forms and the apo models were accurate, we prepared holo models using prediction methods for ligand-binding (eF-seek) and conformational change (the elastic network model and the linear response theory). Models are displayed as animated images. As of July 2010, SAHG contains 42 581 protein-domain models in approximately 24 900 unique human protein sequences from the RefSeq database. Annotation of models with functional information and links to other databases such as EzCatDB, InterPro or HPRD are also provided to facilitate understanding the protein structure-function relationships

    Multiple Translocation of the AVR-Pita Effector Gene among Chromosomes of the Rice Blast Fungus Magnaporthe oryzae and Related Species

    Get PDF
    Magnaporthe oryzae is the causal agent of rice blast disease, a devastating problem worldwide. This fungus has caused breakdown of resistance conferred by newly developed commercial cultivars. To address how the rice blast fungus adapts itself to new resistance genes so quickly, we examined chromosomal locations of AVR-Pita, a subtelomeric gene family corresponding to the Pita resistance gene, in various isolates of M. oryzae (including wheat and millet pathogens) and its related species. We found that AVR-Pita (AVR-Pita1 and AVR-Pita2) is highly variable in its genome location, occurring in chromosomes 1, 3, 4, 5, 6, 7, and supernumerary chromosomes, particularly in rice-infecting isolates. When expressed in M. oryzae, most of the AVR-Pita homologs could elicit Pita-mediated resistance, even those from non-rice isolates. AVR-Pita was flanked by a retrotransposon, which presumably contributed to its multiple translocation across the genome. On the other hand, family member AVR-Pita3, which lacks avirulence activity, was stably located on chromosome 7 in a vast majority of isolates. These results suggest that the diversification in genome location of AVR-Pita in the rice isolates is a consequence of recognition by Pita in rice. We propose a model that the multiple translocation of AVR-Pita may be associated with its frequent loss and recovery mediated by its transfer among individuals in asexual populations. This model implies that the high mobility of AVR-Pita is a key mechanism accounting for the rapid adaptation toward Pita. Dynamic adaptation of some fungal plant pathogens may be achieved by deletion and recovery of avirulence genes using a population as a unit of adaptation

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Phase stability of the earth-abundant tin sulfides SnS, SnS2, and Sn2S3

    Get PDF
    The various phases of tin sulfide have been studied as semiconductors since the 1960s and are now being investigated as potential earth-abundant photovoltaic and photocatalytic materials. Of particular note is the recent isolation of zincblende SnS in particles and thin-films. Herein, first-principles calculations are employed to better understand this novel geometry and its place within the tin sulfide multiphasic system. We report the enthalpies of formation for the known phases of SnS, SnS2, and Sn2S3, with good agreement between theory and experiment for the ground-state structures of each. While theoretical X-ray diffraction patterns do agree with the assignment of the zincblende phase demonstrated in the literature, the structure is not stable close to the lattice parameters observed experimentally, exhibiting an unfeasibly large pressure and a formation enthalpy much higher than any other phase. Ab initio molecular dynamics simulations reveal spontaneous degradation to an amorphous phase much lower in energy, as Sn(II) is inherently unstable in a regular tetrahedral environment. We conclude that the known rocksalt phase of SnS has been mis-assigned as zincblende in the recent literature
    corecore