205 research outputs found

    Inter-hemispheric EEG coherence analysis in Parkinson's disease : Assessing brain activity during emotion processing

    Get PDF
    Parkinson’s disease (PD) is not only characterized by its prominent motor symptoms but also associated with disturbances in cognitive and emotional functioning. The objective of the present study was to investigate the influence of emotion processing on inter-hemispheric electroencephalography (EEG) coherence in PD. Multimodal emotional stimuli (happiness, sadness, fear, anger, surprise, and disgust) were presented to 20 PD patients and 30 age-, education level-, and gender-matched healthy controls (HC) while EEG was recorded. Inter-hemispheric coherence was computed from seven homologous EEG electrode pairs (AF3–AF4, F7–F8, F3–F4, FC5–FC6, T7–T8, P7–P8, and O1–O2) for delta, theta, alpha, beta, and gamma frequency bands. In addition, subjective ratings were obtained for a representative of emotional stimuli. Interhemispherically, PD patients showed significantly lower coherence in theta, alpha, beta, and gamma frequency bands than HC during emotion processing. No significant changes were found in the delta frequency band coherence. We also found that PD patients were more impaired in recognizing negative emotions (sadness, fear, anger, and disgust) than relatively positive emotions (happiness and surprise). Behaviorally, PD patients did not show impairment in emotion recognition as measured by subjective ratings. These findings suggest that PD patients may have an impairment of inter-hemispheric functional connectivity (i.e., a decline in cortical connectivity) during emotion processing. This study may increase the awareness of EEG emotional response studies in clinical practice to uncover potential neurophysiologic abnormalities

    Personalized Pathway Enrichment Map of Putative Cancer Genes from Next Generation Sequencing Data

    Get PDF
    BACKGROUND: Pathway analysis of a set of genes represents an important area in large-scale omic data analysis. However, the application of traditional pathway enrichment methods to next-generation sequencing (NGS) data is prone to several potential biases, including genomic/genetic factors (e.g., the particular disease and gene length) and environmental factors (e.g., personal life-style and frequency and dosage of exposure to mutagens). Therefore, novel methods are urgently needed for these new data types, especially for individual-specific genome data. METHODOLOGY: In this study, we proposed a novel method for the pathway analysis of NGS mutation data by explicitly taking into account the gene-wise mutation rate. We estimated the gene-wise mutation rate based on the individual-specific background mutation rate along with the gene length. Taking the mutation rate as a weight for each gene, our weighted resampling strategy builds the null distribution for each pathway while matching the gene length patterns. The empirical P value obtained then provides an adjusted statistical evaluation. PRINCIPAL FINDINGS/CONCLUSIONS: We demonstrated our weighted resampling method to a lung adenocarcinomas dataset and a glioblastoma dataset, and compared it to other widely applied methods. By explicitly adjusting gene-length, the weighted resampling method performs as well as the standard methods for significant pathways with strong evidence. Importantly, our method could effectively reject many marginally significant pathways detected by standard methods, including several long-gene-based, cancer-unrelated pathways. We further demonstrated that by reducing such biases, pathway crosstalk for each individual and pathway co-mutation map across multiple individuals can be objectively explored and evaluated. This method performs pathway analysis in a sample-centered fashion, and provides an alternative way for accurate analysis of cancer-personalized genomes. It can be extended to other types of genomic data (genotyping and methylation) that have similar bias problems

    Large introns in relation to alternative splicing and gene evolution: a case study of Drosophila bruno-3

    Get PDF
    Background: Alternative splicing (AS) of maturing mRNA can generate structurally and functionally distinct transcripts from the same gene. Recent bioinformatic analyses of available genome databases inferred a positive correlation between intron length and AS. To study the interplay between intron length and AS empirically and in more detail, we analyzed the diversity of alternatively spliced transcripts (ASTs) in the Drosophila RNA-binding Bruno-3 (Bru-3) gene. This gene was known to encode thirteen exons separated by introns of diverse sizes, ranging from 71 to 41,973 nucleotides in D. melanogaster. Although Bru-3's structure is expected to be conducive to AS, only two ASTs of this gene were previously described. Results: Cloning of RT-PCR products of the entire ORF from four species representing three diverged Drosophila lineages provided an evolutionary perspective, high sensitivity, and long-range contiguity of splice choices currently unattainable by high-throughput methods. Consequently, we identified three new exons, a new exon fragment and thirty-three previously unknown ASTs of Bru-3. All exon-skipping events in the gene were mapped to the exons surrounded by introns of at least 800 nucleotides, whereas exons split by introns of less than 250 nucleotides were always spliced contiguously in mRNA. Cases of exon loss and creation during Bru-3 evolution in Drosophila were also localized within large introns. Notably, we identified a true de novo exon gain: exon 8 was created along the lineage of the obscura group from intronic sequence between cryptic splice sites conserved among all Drosophila species surveyed. Exon 8 was included in mature mRNA by the species representing all the major branches of the obscura group. To our knowledge, the origin of exon 8 is the first documented case of exonization of intronic sequence outside vertebrates. Conclusion: We found that large introns can promote AS via exon-skipping and exon turnover during evolution likely due to frequent errors in their removal from maturing mRNA. Large introns could be a reservoir of genetic diversity, because they have a greater number of mutable sites than short introns. Taken together, gene structure can constrain and/or promote gene evolution

    RAFI replication: easier done than said?

    Get PDF
    This is a post-peer-review, pre-copyedit version of an article published in The Journal of Asset Management. The definitive publisher-authenticated version Glabadanidis, Paskalis Teodoros; Obaydin, Ivan; Zurbruegg, Ralf, RAFI replication: easier done than said?, The Journal of Asset Management, 2012; 13(3):210-225 is available online at: dx.doi.org/10.1057/jam.2012.7We investigate whether adding fundamental indices to a portfolio provides increased diversification benefits. Our results show that equity investors who care only about portfolio mean and variance will benefit from including a fundamental index in their portfolios. This benefit is especially pronounced during periods of average stock market volatility. We also find that investors can construct a do-it-yourself buy-and-hold replicating portfolio that frequently outperforms the Research Affiliates Fundamental Index®(RAFI®), exchange traded fund out-of-sample.Paskalis Glabadanidis, Ivan Obaydin, Ralf Zurbrueg

    Treating frailty-a practical guide

    Get PDF
    Frailty is a common syndrome that is associated with vulnerability to poor health outcomes. Frail older people have increased risk of morbidity, institutionalization and death, resulting in burden to individuals, their families, health care services and society. Assessment and treatment of the frail individual provide many challenges to clinicians working with older people. Despite frailty being increasingly recognized in the literature, there is a paucity of direct evidence to guide interventions to reduce frailty. In this paper we review methods for identification of frailty in the clinical setting, propose a model for assessment of the frail older person and summarize the current best evidence for treating the frail older person. We provide an evidence-based framework that can be used to guide the diagnosis, assessment and treatment of frail older people

    Use of a T cell interferon gamma release assay in the investigation for suspected active tuberculosis in a low prevalence area

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In settings with low background prevalence of tuberculosis (TB) infection, interferon-γ release assays (IGRA) could be useful for diagnosing active TB. This study aims to evaluate the performance of QuantiFERON<sup>®</sup>-TB Gold (QFT-G) in the investigation for suspected active TB, with particular attention to patients originating in high-incidence countries. Furthermore, factors associated with QFT-G results in patients with active TB were assessed.</p> <p>Methods</p> <p>From patients investigated for clinically suspected active TB, blood was obtained for QFT-G testing, in addition to routine investigations. Positive (PPV) and negative (NPV) predictive values for QFT-G were calculated, comparing patients with confirmed TB and those with other final diagnoses. QFT-G results in TB patients originating from countries with intermediate or high TB incidence were compared with QFT-G results from a control group of recently arrived asymptomatic immigrants from high-incidence countries. Factors associated with QFT-G outcome in patients with confirmed TB were assessed.</p> <p>Results</p> <p>Among 141 patients, 41/70 (58.6%) with confirmed TB had a positive QFT-G test, compared to 16/71 (22.6%) patients with other final diagnoses, resulting in overall PPV of 71.9% and NPV of 67.6%. For patients with pulmonary disease, PPV and NPV were 61.1% and 67.7%, respectively, and 90.5% and 66.7% for subjects with extrapulmonary manifestations. Comparing patients from high-incidence countries with controls yielded a PPV for active TB of 76.7%, and a NPV of 82.7%. Patients with confirmed TB and positive QFT-G results were characterized by a lower median peripheral white blood cell count (5.9 × 10<sup>9</sup>/L vs. 8.8 × 10<sup>9</sup>/L; <it>P </it>< 0.001) and a higher median body mass index (22.7 vs. 20.7; <it>P </it>= 0.043) as compared to QFT-G-negative TB patients.</p> <p>Conclusion</p> <p>The overall PPV and NPV of QFT-G for identifying active TB were unsatisfactory, especially for pulmonary disease. Thus, the usefulness of QFT-G for this purpose is questionable. However, a high PPV was observed for extrapulmonary TB and QFT-G might be considered in the diagnostic process in this situation. The PPV and NPV for identifying active TB among persons originating from regions with high-and intermediate TB incidence was similar to that observed in subjects originating in the low-incidence region.</p

    Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea

    Get PDF
    Salinity is a major factor controlling the distribution of biota in aquatic systems, and most aquatic multicellular organisms are either adapted to life in saltwater or freshwater conditions. Consequently, the saltwater–freshwater mixing zones in coastal or estuarine areas are characterized by limited faunal and floral diversity. Although changes in diversity and decline in species richness in brackish waters is well documented in aquatic ecology, it is unknown to what extent this applies to bacterial communities. Here, we report a first detailed bacterial inventory from vertical profiles of 60 sampling stations distributed along the salinity gradient of the Baltic Sea, one of world's largest brackish water environments, generated using 454 pyrosequencing of partial (400 bp) 16S rRNA genes. Within the salinity gradient, bacterial community composition altered at broad and finer-scale phylogenetic levels. Analogous to faunal communities within brackish conditions, we identified a bacterial brackish water community comprising a diverse combination of freshwater and marine groups, along with populations unique to this environment. As water residence times in the Baltic Sea exceed 3 years, the observed bacterial community cannot be the result of mixing of fresh water and saltwater, but our study represents the first detailed description of an autochthonous brackish microbiome. In contrast to the decline in the diversity of multicellular organisms, reduced bacterial diversity at brackish conditions could not be established. It is possible that the rapid adaptation rate of bacteria has enabled a variety of lineages to fill what for higher organisms remains a challenging and relatively unoccupied ecological niche

    Latitudinal Gradients in Degradation of Marine Dissolved Organic Carbon

    Get PDF
    Heterotrophic microbial communities cycle nearly half of net primary productivity in the ocean, and play a particularly important role in transformations of dissolved organic carbon (DOC). The specific means by which these communities mediate the transformations of organic carbon are largely unknown, since the vast majority of marine bacteria have not been isolated in culture, and most measurements of DOC degradation rates have focused on uptake and metabolism of either bulk DOC or of simple model compounds (e.g. specific amino acids or sugars). Genomic investigations provide information about the potential capabilities of organisms and communities but not the extent to which such potential is expressed. We tested directly the capabilities of heterotrophic microbial communities in surface ocean waters at 32 stations spanning latitudes from 76°S to 79°N to hydrolyze a range of high molecular weight organic substrates and thereby initiate organic matter degradation. These data demonstrate the existence of a latitudinal gradient in the range of complex substrates available to heterotrophic microbial communities, paralleling the global gradient in bacterial species richness. As changing climate increasingly affects the marine environment, changes in the spectrum of substrates accessible by microbial communities may lead to shifts in the location and rate at which marine DOC is respired. Since the inventory of DOC in the ocean is comparable in magnitude to the atmospheric CO2 reservoir, such a change could profoundly affect the global carbon cycle

    Electrochemically synthesized polymers in molecular imprinting for chemical sensing

    Get PDF
    This critical review describes a class of polymers prepared by electrochemical polymerization that employs the concept of molecular imprinting for chemical sensing. The principal focus is on both conducting and nonconducting polymers prepared by electropolymerization of electroactive functional monomers, such as pristine and derivatized pyrrole, aminophenylboronic acid, thiophene, porphyrin, aniline, phenylenediamine, phenol, and thiophenol. A critical evaluation of the literature on electrosynthesized molecularly imprinted polymers (MIPs) applied as recognition elements of chemical sensors is presented. The aim of this review is to highlight recent achievements in analytical applications of these MIPs, including present strategies of determination of different analytes as well as identification and solutions for problems encountered
    corecore