35 research outputs found

    Development of a chemically defined medium and discovery of new mitogenic growth factors for mouse hepatocytes: Mitogenic effects of FGF1/2 and PDGF

    Get PDF
    Chemically defined serum-free media for rat hepatocytes have been useful in identifying EGFR ligands and HGF/MET signaling as direct mitogenic factors for rat hepatocytes. The absence of such media for mouse hepatocytes has prevented screening for discovery of such mitogens for mouse hepatocytes. We present results obtained by designing such a chemically defined medium for mouse hepatocytes and demonstrate that in addition to EGFR ligands and HGF, the growth factors FGF1 and FGF2 are also important mitogenic factors for mouse hepatocytes. Smaller mitogenic response was also noticed for PDGF AB. Mouse hepatocytes are more likely to enter into spontaneous proliferation in primary culture due to activation of cell cycle pathways resulting from collagenase perfusion. These results demonstrate unanticipated fundamental differences in growth biology of hepatocytes between the two rodent species. Copyright: © 2014 Reekie et al

    ENCODE whole-genome data in the UCSC genome browser (2011 update)

    Get PDF
    The ENCODE project is an international consortium with a goal of cataloguing all the functional elements in the human genome. The ENCODE Data Coordination Center (DCC) at the University of California, Santa Cruz serves as the central repository for ENCODE data. In this role, the DCC offers a collection of high-throughput, genome-wide data generated with technologies such as ChIP-Seq, RNA-Seq, DNA digestion and others. This data helps illuminate transcription factor-binding sites, histone marks, chromatin accessibility, DNA methylation, RNA expression, RNA binding and other cell-state indicators. It includes sequences with quality scores, alignments, signals calculated from the alignments, and in most cases, element or peak calls calculated from the signal data. Each data set is available for visualization and download via the UCSC Genome Browser (http://genome.ucsc.edu/). ENCODE data can also be retrieved using a metadata system that captures the experimental parameters of each assay. The ENCODE web portal at UCSC (http://encodeproject.org/) provides information about the ENCODE data and links for access

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    Inherited Genetic Variants Associated with Occurrence of Multiple Primary Melanoma

    Get PDF
    Recent studies including genome-wide association studies have identified several putative low-penetrance susceptibility loci for melanoma. We sought to determine their generalizability to genetic predisposition for multiple primary melanoma in the international population-based Genes, Environment, and Melanoma (GEM) Study. GEM is a case-control study of 1,206 incident cases of multiple primary melanoma and 2,469 incident first primary melanoma participants as the control group. We investigated the odds of developing multiple primary melanoma for 47 single nucleotide polymorphisms (SNP) from 21 distinct genetic regions previously reported to be associated with melanoma. ORs and 95% CIs were determined using logistic regression models adjusted for baseline features (age, sex, age by sex interaction, and study center). We investigated univariable models and built multivariable models to assess independent effects of SNPs. Eleven SNPs in 6 gene neighborhoods (TERT/CLPTM1L, TYRP1, MTAP, TYR, NCOA6, and MX2) and a PARP1 haplotype were associated with multiple primary melanoma. In a multivariable model that included only the most statistically significant findings from univariable modeling and adjusted for pigmentary phenotype, back nevi, and baseline features, we found TERT/CLPTM1L rs401681 (P = 0.004), TYRP1 rs2733832 (P = 0.006), MTAP rs1335510 (P = 0.0005), TYR rs10830253 (P = 0.003), and MX2 rs45430 (P = 0.008) to be significantly associated with multiple primary melanoma while NCOA6 rs4911442 approached significance (P = 0.06). The GEM study provides additional evidence for the relevance of these genetic regions to melanoma risk and estimates the magnitude of the observed genetic effect on development of subsequent primary melanoma

    Healthcare Utilization and Costs of Systemic Lupus Erythematosus in Medicaid

    Get PDF
    Objective. Healthcare utilization and costs associated with systemic lupus erythematosus (SLE) in a US Medicaid population were examined. Methods. Patients ≥ 18 years old with SLE diagnosis (ICD-9-CM 710.0x) were extracted from a large Medicaid database 2002–2009. Index date was date of the first SLE diagnosis. Patients with and without SLE were matched. All patients had a variable length of followup with a minimum of 12 months. Annualized healthcare utilization and costs associated with SLE and costs of SLE flares were assessed during the followup period. Multivariate regressions were conducted to estimate incremental healthcare utilization and costs associated with SLE. Results. A total of 14,777 SLE patients met the study criteria, and 14,262 were matched to non-SLE patients. SLE patients had significantly higher healthcare utilization per year than their matched controls. The estimated incremental annual cost associated with SLE was 10,984,withthehighestincreaseininpatientcosts(P<0.001).Costperflarewas10,984, with the highest increase in inpatient costs (P<0.001). Cost per flare was 11,716 for severe flares, 562formoderateflares,and562 for moderate flares, and 129 for mild flares. Annual total costs for patients with severe flares were $49,754. Conclusions. SLE patients had significantly higher healthcare resource utilization and costs than non-SLE patients. Patients with severe flares had the highest costs

    A benchmark concentration analysis for manganese in drinking water and IQ deficits in children

    Get PDF
    Background: Manganese is an essential nutrient, but in excess, can be a potent neurotoxicant. We previously reported findings from two cross-sectional studies on children, showing that higher concentrations of manganese in drinking water were associated with deficits in IQ scores. Despite the common occurrence of this neurotoxic metal, its concentration in drinking water is rarely regulated. Objective: We aimed to apply a benchmark concentration analysis to estimate water manganese levels associated with pre-defined levels of cognitive impairment in children, i.e. drop of 1%, 2% and 5% in Performance IQ scores. Methods: Data from two studies conducted in Canada were pooled resulting in a sample of 630 children (ages 5.9–13.7 years) with data on tap water manganese concentration and cognition, as well as confounders. We used the Bayesian Benchmark Dose Analysis System to compute weight-averaged median estimates for the benchmark concentration (BMC) of manganese in water and the lower bound of the credible interval (BMCL), based on seven different exposure-response models. Results: The BMC for manganese in drinking water associated with a decrease of 1% Performance IQ score was 133 μg/L (BMCL, 78 μg/L); for a decrease of 2%, this concentration was 266 μg/L (BMCL, 156 μg/L) and for a decrease of 5% it was 676 μg/L (BMCL, 406 μg/L). In sex-stratified analyses, the manganese concentrations associated with a decrease of 1%, 2% and 5% Performance IQ in boys were 185, 375 and 935 μg/L (BMCLs, 75, 153 and 386 μg/L) and 78, 95, 192 μg/L (BMCLs, 9, 21 and 74 μg/L) for girls. Conclusion: Studies suggest that a maximum acceptable concentration for manganese in drinking water should be set to protect children, the most vulnerable population, from manganese neurotoxicity. The present risk analysis can guide decision-makers responsible for developing these standards

    Genomic Screening of Fibroblast Growth-Factor Receptor 2 Reveals a Wide Spectrum of Mutations in Patients with Syndromic Craniosynostosis

    Get PDF
    It has been known for several years that heterozygous mutations of three members of the fibroblast growth-factor–receptor family of signal-transduction molecules—namely, FGFR1, FGFR2, and FGFR3—contribute significantly to disorders of bone patterning and growth. FGFR3 mutations, which predominantly cause short-limbed bone dysplasia, occur in all three major regions (i.e., extracellular, transmembrane, and intracellular) of the protein. By contrast, most mutations described in FGFR2 localize to just two exons (IIIa and IIIc), encoding the IgIII domain in the extracellular region, resulting in syndromic craniosynostosis including Apert, Crouzon, or Pfeiffer syndromes. Interpretation of this apparent clustering of mutations in FGFR2 has been hampered by the absence of any complete FGFR2-mutation screen. We have now undertaken such a screen in 259 patients with craniosynostosis in whom mutations in other genes (e.g., FGFR1, FGFR3, and TWIST) had been excluded; part of this screen was a cohort-based study, enabling unbiased estimates of the mutation distribution to be obtained. Although the majority (61/62 in the cohort sample) of FGFR2 mutations localized to the IIIa and IIIc exons, we identified mutations in seven additional exons—including six distinct mutations of the tyrosine kinase region and a single mutation of the IgII domain. The majority of patients with atypical mutations had diagnoses of Pfeiffer syndrome or Crouzon syndrome. Overall, FGFR2 mutations were present in 9.8% of patients with craniosynostosis who were included in a prospectively ascertained sample, but no mutations were found in association with isolated fusion of the metopic or sagittal sutures. We conclude that the spectrum of FGFR2 mutations causing craniosynostosis is wider than previously recognized but that, nevertheless, the IgIIIa/IIIc region represents a genuine mutation hotspot
    corecore