14 research outputs found

    SNARE-Dependent Membrane Fusion Initiates α-Granule Matrix Decondensation in Mouse Platelets

    Get PDF
    Platelet α-granule cargo release is fundamental to both hemostasis and thrombosis. Granule matrix hydration is a key regulated step in this process, yet its mechanism is poorly understood. In endothelial cells, there is evidence for 2 modes of cargo release: a jack-in-the-box mechanism of hydration-dependent protein phase transitions and an actin-driven granule constriction/extrusion mechanism. The third alternative considered is a prefusion, channel-mediated granule swelling, analogous to the membrane “ballooning” seen in procoagulant platelets. Using thrombin-stimulated platelets from a set of secretion-deficient, soluble N-ethylmaleimide factor attachment protein receptor (SNARE) mutant mice and various ultrastructural approaches, we tested predictions of these mechanisms to distinguish which best explains the α-granule release process. We found that the granule decondensation/hydration required for cargo expulsion was (1) blocked in fusion-protein-deficient platelets; (2) characterized by a fusion-dependent transition in granule size in contrast to a preswollen intermediate; (3) determined spatially with α-granules located close to the plasma membrane (PM) decondensing more readily; (4) propagated from the site of granule fusion; and (5) traced, in 3-dimensional space, to individual granule fusion events at the PM or less commonly at the canalicular system. In sum, the properties of α-granule decondensation/matrix hydration strongly indicate that α-granule cargo expulsion is likely by a jack-in-the-box mechanism rather than by gradual channel-regulated water influx or by a granule-constriction mechanism. These experiments, in providing a structural and mechanistic basis for cargo expulsion, should be informative in understanding the α-granule release reaction in the context of hemostasis and thrombosis

    3D ultrastructural analysis of α‐granule, dense granule, mitochondria, and canalicular system arrangement in resting human platelets

    No full text
    Abstract Background State‐of‐the‐art 3‐dimensional (3D) electron microscopy approaches provide a new standard for the visualization of human platelet ultrastructure. Application of these approaches to platelets rapidly fixed prior to purification to minimize activation should provide new insights into resting platelet ultrastructure. Objectives Our goal was to determine the 3D organization of α‐granules, dense granules, mitochondria, and canalicular system in resting human platelets and map their spatial relationships. Methods We used serial block face–scanning electron microscopy images to render the 3D ultrastructure of α‐granules, dense granules, mitochondria, canalicular system, and plasma membrane for 30 human platelets, 10 each from 3 donors. α‐Granule compositional data were assessed by sequential, serial section cryo‐immunogold electron microscopy and by immunofluorescence (structured illumination microscopy). Results and Conclusions α‐Granule number correlated linearly with platelet size, while dense granule and mitochondria number had little correlation with platelet size. For all subcellular compartments, individual organelle parameters varied considerably and organelle volume fraction had little correlation with platelet size. Three‐dimensional data from 30 platelets indicated only limited spatial intermixing of the different organelle classes. Interestingly, almost 70% of α‐granules came within ≀35 nm of each other, a distance associated in other cell systems with protein‐mediated contact sites. Size and shape analysis of the 1488 α‐granules analyzed revealed no more variation than that expected for a Gaussian distribution. Protein distribution data indicated that all α‐granules likely contained the same major set of proteins, albeit at varying amounts and varying distribution within the granule matrix

    Structural analysis of resting mouse platelets by 3D-EM reveals an unexpected variation in α-granule shape

    No full text
    Mice and mouse platelets are major experimental models for hemostasis and thrombosis; however, important physiological data from this model has received little to no quantitative, 3D ultrastructural analysis. We used state-of-the-art, serial block imaging scanning electron microscopy (SBF-SEM, nominal Z-step size was 35 nm) to image resting platelets from C57BL/6 mice. α-Granules were identified morphologically and rendered in 3D space. The quantitative analysis revealed that mouse α-granules typically had a variable, elongated, rod shape, different from the round/ovoid shape of human α–granules. This variation in length was confirmed qualitatively by higher-resolution, focused ion beam (FIB) SEM at a nominal 5 nm Z-step size. The unexpected α-granule shape raises novel questions regarding α-granule biogenesis and dynamics. Does the variation arise at the level of the megakaryocyte and α-granule biogenesis or from differences in α-granule dynamics and organelle fusion/fission events within circulating platelets? Further quantitative analysis revealed that the two major organelles in circulating platelets, α-granules and mitochondria, displayed a stronger linear relationship between organelle number/volume and platelet size, i.e., a scaling in number and volume to platelet size, than found in human platelets suggestive of a tighter mechanistic regulation of their inclusion during platelet biogenesis. In conclusion, the overall spatial arrangement of organelles within mouse platelets was similar to that of resting human platelets, with mouse α-granules clustered closely together with little space for interdigitation of other organelles

    Canalicular system reorganization during mouse platelet activation as revealed by 3D ultrastructural analysis

    No full text
    The canalicular system (CS) has been defined as: 1) an inward, invaginated membrane connector that supports entry into and exit from the platelet; 2) a static structure stable during platelet isolation; and 3) the major source of plasma membrane (PM) for surface area expansion during activation. Recent analysis from STEM tomography and serial block face electron microscopy has challenged the relative importance of CS as the route for granule secretion. Here, We used 3D ultrastructural imaging to reexamine the CS in mouse platelets by generating high-resolution 3D reconstructions to test assumptions 2 and 3. Qualitative and quantitative analysis of whole platelet reconstructions, obtained from immediately fixed or washed platelets fixed post-washing, indicated that CS, even in the presence of activation inhibitors, reorganized during platelet isolation to generate a more interconnected network. Further, CS redistribution into the PM at different times, post-activation, appeared to account for only about half the PM expansion seen in thrombin-activated platelets, in vitro, suggesting that CS reorganization is not sufficient to serve as a dominant membrane reservoir for activated platelets. In sum, our analysis highlights the need to revisit past assumptions about the platelet CS to better understand how this membrane system contributes to platelet function

    Deep learning, 3D ultrastructural analysis reveals quantitative differences in platelet and organelle packing in COVID-19/SARSCoV2 patient-derived platelets

    No full text
    AbstractPlatelets contribute to COVID-19 clinical manifestations, of which microclotting in the pulmonary vasculature has been a prominent symptom. To investigate the potential diagnostic contributions of overall platelet morphology and their α-granules and mitochondria to the understanding of platelet hyperactivation and micro-clotting, we undertook a 3D ultrastructural approach. Because differences might be small, we used the high-contrast, high-resolution technique of focused ion beam scanning EM (FIB-SEM) and employed deep learning computational methods to evaluate nearly 600 individual platelets and 30 000 included organelles within three healthy controls and three severely ill COVID-19 patients. Statistical analysis reveals that the α-granule/mitochondrion-to-plateletvolume ratio is significantly greater in COVID-19 patient platelets indicating a denser packing of organelles, and a more compact platelet. The COVID-19 patient platelets were significantly smaller –by 35% in volume – with most of the difference in organelle packing density being due to decreased platelet size. There was little to no 3D ultrastructural evidence for differential activation of the platelets from COVID-19 patients. Though limited by sample size, our studies suggest that factors outside of the platelets themselves are likely responsible for COVID-19 complications. Our studies show how deep learning 3D methodology can become the gold standard for 3D ultrastructural studies of platelets

    Increased electrophoretic mobility and altered cross-linking of type I collagen from <i>Sc65-null</i> skin.

    No full text
    <p>a) SDS-6%PAGE of type I collagen extracted from skin and decalcified bone of <i>Sc65KO</i> and WT mice shows increased mobility of α-chains and reduced ratio of cross-linked ÎČ to Îł components in the <i>Sc65KO</i> skin extracts. An acetic acid extract from skin of the original Sc65-null mouse<sup>19</sup> (1 mo.) created by gene-trap insertion is compared with that from the new <i>Sc65KO</i> (6 mo.) and their respective WT controls. Total heat denatured extracts of skin and bone collagens from new <i>Sc65KO</i> mice are shown on the right for comparison. Bone collagen from <i>Sc65KO</i> mice does not show the differences from WT in ÎČ/Îł intensities evident for skin collagen. The strong (lower) Îł band in SC65 skin extracts was identified as Îł <sub>112.</sub> Both original and new <i>Sc65KO</i> mice showed the same altered pattern of chain intensities from WT most pronounced in the acetic acid extracts of skin with an apparent increase in Îł<sub>112</sub> at the expense of ÎČ<sub>12.</sub> b) Densitometric analysis of collagen bands on SDS-PAGE. Densitometry was performed on bands 1–8 (counted from top to bottom) of acetic acid extracts from 1mo and 6mo skin samples of both original and new <i>Sc65KO</i> mice using NIH imageJ software. Values are means ± SD, n = 6; *p<0.01.</p

    Loss of Sc65 results in dermal tears, abnormal collagen fibrils and skin fragility.

    No full text
    <p>a) H&E stained sections of WT and <i>Sc65KO</i> skin. Note the decreased density of collagen, the frayed dermis indicated by arrows and the reduced thickness of the muscle layer in the <i>Sc65-null</i> samples. b) Serial skin sections were stained with Sirius red. <i>Sc65-null</i> skin exhibits fewer large collagen fibers (red staining) and greater number of smaller collagen fibers stained in green compared to WT counterparts. c) Electron micrographs of 7 month-old mouse skin biopsy from WT and <i>Sc65KO</i> mice. Collagen fibrils, shown in cross-section, from <i>Sc65-null</i> skin tended to be smaller and have a decreased range of fibril diameter compared to WT fibrils. Loss of Sc65 also resulted in the presence of collagen fibrils with irregular profile and several large “cauliflower-like” fibrils (red arrow) which indicate abnormal fibrillogenesis (scale bar represents 500nm). d) Distribution of collagen fibril diameter in WT and <i>Sc65KO</i> mouse skin as measured from electron microscopy images. Measurements were collected from three different mice/genotype and >200 fibril/mouse. e) Skin EMs from <i>Sc65KO</i> mice also exhibited significantly more empty space among collagen fibrils compared to WT mice indicating a less densely packed collagen (*p = 0.01). Five electron micrograph images of non-overlapping areas were quantified from each mouse. f-h) Skin samples from WT and <i>Sc65KO</i> mice were subjected to a biomechanical skin loading test to measure tensile strength. Skin that lacks SC65 expression ruptured at a significantly lower peak load compared to WT skin indicating significant skin fragility (*p<0.01).</p

    SC65 directly interacts with prolyl 3-hydroxylase 3 (P3H3).

    No full text
    <p>a) Lysates of 714 mouse embryonic fibroblasts stably expressing SC65-Flag or EV control were used for IP experiments utilizing a Flag antibody (upper panel) or a P3H3 antibody (lower panel). 10% of total inputs and immuno-precipitates were separated on a 10% SDS-PAGE gel, blotted and probed with antibodies against FLAG and P3H3. The reciprocal interaction of SC65-Flag with P3H3 is confirmed in both experiments. b) Western blot of primary calvarial osteoblast and skin fibroblast lysates from WT and <i>Sc65KO</i> 3 day-old mice (N = 2) showing significantly decreased levels of P3H3 protein in <i>Sc65KO</i> samples. Densitometric quantification of P3H3 protein normalized to ÎČ-actin from the western blot shown above (#p<0.01; *p<0.05; error bars represent SD). All experiments were performed at least 3 times.</p

    Characterization of a new SC65/LH1/P3H3 complex in the ER.

    No full text
    <p>a) Lysates of 714 mouse embryonic fibroblasts that were transiently transfected with an HA-tagged LH1 expression construct were immuno-precipitated with a HA antibody (upper panel) or a P3H3 antibody (lower panel). 10% of total inputs and immuno-precipitates were separated on a 8% SDS-PAGE gel, blotted and probed with antibodies against HA and P3H3. Negative controls included non-transfected 714 cells incubated with the HA antibody (for non-specific binding of HA antibody, left lanes) and LH1-HA transfected cells incubated with no antibody (for non-specific proteins binding to beads, middle lanes). In both experiments, LH1-HA and P3H3 were found to interact (right lanes). b) Lysates of 714 mouse embryonic fibroblasts stably expressing SC65-Flag or EV control and transiently transfected with a HA-tagged CYPB were used for IP utilizing an HA antibody. 10% of total input and immuno-precipitates were separated on a 12% SDS-PAGE gel, blotted and probed with antibodies against Flag and HA. The blot detecting SC65-Flag following IP with the HA antibody is shown over-exposed. c) Western blot of primary calvarial osteoblast and skin fibroblast lysates from WT and <i>Sc65KO</i> 3 day-old mice (N = 2) showing similar content of CYPB protein in <i>Sc65KO</i> and WT samples. All experiments were performed at least 3 times.</p
    corecore