397 research outputs found

    HALOGAS observations of NGC 5023 and UGC 2082: Modeling of non-cylindrically symmetric gas distributions in edge-on galaxies

    Get PDF
    In recent years it has become clear that the vertical structure of disk galaxies is a key ingredient for understanding galaxy evolution. In particular, the presence and structure of extra-planar gas has been a focus of research. The Hydrogen Accretion in LOcal GAlaxieS (HALOGAS) survey aims to provide a census on the rate of cold neutral gas accretion in nearby galaxies as well as a statistically significant set of galaxies that can be investigated for their extra-planar gas properties. In order to better understand the the vertical structure of the neutral hydrogen in the two edge-on HALOGAS galaxies NGC 5023 and UGC 2082 we construct detailed tilted ring models. The addition of distortions resembling arcs or spiral arms significantly improves the fit of the models to these galaxies. In the case of UGC 2082 no vertical gradient in rotational velocity is required in either symmetric models nor non-symmetric models to match the observations. The best fitting model features two arcs of large vertical extent that may be due to accretion. In the case of NGC 5023 a vertical gradient is required in symmetric models (dV/dz =14.9±3.8-14.9\pm3.8 km s1^{-1} kpc1^{-1}) and its magnitude is significantly lowered when non-symmetric models are considered (dV/dz =9.4±3.8-9.4\pm3.8 km s1^{-1} kpc1^{-1}). Additionally it is shown that the underlying disk of NGC 5023 can be made symmetric, in all parameters except the warp, in non-symmetric models. In comparison to the "classical" modeling these models fit the data significantly better with a limited addition of free parameters.Comment: 27 Pages, 22 Figures. Accepted for publication in MNRA

    Agent based demand flexibility management for wind power forecasting error mitigation using the SG-BEMS framework

    Get PDF
    The integration process of renewable energy sources (RES) and distributed energy resources (DER) into the power system, is characterized by concerns that originate from their stochastic and uncontrollable nature. This means that system operators require reliable forecasting tools, in order to ensure efficient and reliable operation. Accordingly, this paper proposes the use of demand flexibility, to counteract the RES forecasting errors. For this purpose, distributed and decentralized intelligence is used, via the SG-BEMS framework, to invoke demand flexibility in a timely and effective fashion, while taking into account the negative effects on the building occupants comfort. Lastly, numerical results from a simulated case of study are presented, which confirm that demand flexibility can be used to mitigate the magnitude of forecast errors

    3D MHD Modeling of the Gaseous Structure of the Galaxy: Setup and Initial Results

    Get PDF
    We show the initial results of our 3D MHD simulations of the flow of the Galactic atmosphere as it responds to a spiral perturbation in the potential. In our standard case, as the gas approaches the arm, there is a downward converging flow that terminates in a complex of shocks just ahead of the midplane density peak. The density maximum slants forward at high z, preceeded by a similarly leaning shock. The latter diverts the flow upward and over the arm, as in a hydraulic jump. Behind the gaseous arm, the flow falls again, generating further secondary shocks as it approaches the lower z material. Structures similar to the high z part of the gaseous arms are found in the interarm region of our two-armed case, while broken arms and low column density bridges are present in the four-armed case. We present three examples of what can be learned from these models.Comment: 33 pages, 17 figures. Accepted for publication in Apj. Better quality images in http://www.journals.uchicago.edu/ApJ/journal/preprints/ApJ55782.preprint.pd

    An HI View of Galaxy Conformity: HI-rich Environment around HI-excess Galaxies

    Get PDF
    Using data taken as part of the Bluedisk project we study the connection between neutral hydrogen (HI) in the environment of spiral galaxies and that in the galaxies themselves. We measure the total HI mass present in the environment in a statistical way by studying the distribution of noise peaks in the HI data cubes obtained for 40 galaxies observed with WSRT. We find that galaxies whose HI mass fraction is high relative to standard scaling relations have an excess HI mass in the surrounding environment as well. Gas in the environment consists of gas clumps which are individually below the detection limit of our HI data. These clumps may be hosted by small satellite galaxies and\or be the high-density peaks of a more diffuse gas distribution in the inter-galactic medium. We interpret this result as an indication for a picture in which the HI-rich central galaxies accrete gas from an extended gas reservoir present in their environment.Comment: 15 pages, 13 figures. Accepted for publication in MNRA

    An Exploration of the Tully-Fisher Relation for Extreme Late-Type Spiral Galaxies

    Get PDF
    This paper explores the adherence of 47 extreme late-type galaxies to the B- and V-band Tully-Fisher relations defined by a sample of local calibrators. In both bands we find the mean luminosity at a given line width for extreme late-type spirals to lie below that predicted by standard Tully-Fisher relations. While many of the extreme late-type spirals do follow the Tully-Fisher relation to within our observational uncertainties, most of these galaxies lie below the normal, linear Tully-Fisher relation, and some are underluminous by more than 2 sigma (i.e. >1.16 magnitudes in V). This suggests a possible downward curvature of the Tully-Fisher relation for some of the smallest and faintest rotationally supported disk galaxies. This may be a consequence of the increasing prevalence of dark matter in these systems. We find the deviation from the Tully-Fisher relation to increase with decreasing luminosity and decreasing optical linear size in our sample, implying that the physically smallest and faintest spirals may be a structurally and kinematically distinct class of objects.Comment: 32 pages, 13 figures; to appear in the November A

    CO(1-0), CO(2-1) and Neutral Gas in NGC 6946: Molecular Gas in a Late-Type, Gas Rich, Spiral Galaxy

    Full text link
    We present "On The Fly" maps of the CO(1-0) and CO(2-1) emission covering a 10' X 10' region of the NGC 6946. Using our CO maps and archival VLA HI observations we create a total gas surface density map, Sigma_gas, for NGC 6946. The predominantly molecular inner gas disk transitions smoothly into an atomic outer gas disk, with equivalent atomic and molecular gas surface densities at R = 3.5' (6 kpc). We estimate that the total H2 mass is 3 X 10^9 Mo, roughly 1/3 of the interstellar hydrogen gas mass, and about 2% of the dynamical mass of the galaxy at our assumed distance of 6 Mpc. The value of the CO(2-1)/CO(1-0) line ratio ranges from 0.35 to 2; 50% of the map is covered by very high ratio, >1, gas. The very high ratios are predominantly from interarm regions and appear to indicate the presence of wide-spread optically thin gas. Star formation tracers are better correlated with the total neutral gas disk than with the molecular gas by itself implying SFR is proportional to Sigma_gas. Using the 100 FIR and 21 cm continuum from NGC 6946 as star formation tracers, we arrive at a gas consumption timescale of 2.8 Gyr, which is relatively uniform across the disk. The high star formation rate at the nucleus appears to be due to a large accumulation of molecular gas rather than a large increase in the star formation efficiency. The mid-plane gas pressure in the outer (R > 10 kpc) HI arms of NGC 6946 is close to the value at the radial limit (10 kpc) of our observed CO disk. If the mid-plane gas pressure is a factor for the formation of molecular clouds, these outer HI gas arms should contain molecular gas which we do not see because they are beyond our detection limit

    The MeerKAT Fornax Survey -- II. The rapid removal of HI from dwarf galaxies in the Fornax cluster

    Get PDF
    We present MeerKAT Fornax Survey atomic hydrogen (HI) observations of the dwarf galaxies located in the central ~2.5 x 4 deg2^2 of the Fornax galaxy cluster. The HI images presented in this work have a 3σ3\sigma column density sensitivity between 2.7 and 50 x 1018^{18} cm2^{-2} over 25 km s1^{-1} for spatial resolution between 4 and 1 kpc. We are able to detect an impressive MHI = 5 x 105^{5} Msun 3σ\sigma point source with a line width of 50 km s1^{-1} at a distance of 20 Mpc. We detect HI in 17 out of the 304 dwarfs in our field -- 14 out of the 36 late type dwarfs (LTDs), and 3 of the 268 early type dwarfs (ETDs). The HI-detected LTDs have likely just joined the cluster and are on their first infall as they are located at large clustocentric radii, with comparable MHI and mean stellar surface brightness at fixed luminosity as blue, star-forming LTDs in the field. The HI-detected ETDs have likely been in the cluster longer than the LTDs and acquired their HI through a recent merger or accretion from nearby HI. Eight of the HI-detected LTDs host irregular or asymmetric HI emission and disturbed or lopsided stellar emission. There are two clear cases of ram-pressure shaping the HI, with the LTDs displaying compressed HI on the side closest to the cluster centre and a one-sided, starless tail pointing away from the cluster centre. The HI-detected dwarfs avoid the most massive potentials, consistent with massive galaxies playing an active role in the removal of HI. We create a simple toy model to quantify the timescale of HI stripping in the cluster. We find that a MHI = 108^{8} Msun dwarf will be stripped in ~ 240 Myr. The model is consistent with our observations, where low mass LTDs are directly stripped of their HI from a single encounter and more massive LTDs can harbour a disturbed HI morphology due to longer times or multiple encounters being required to fully strip their HI.Comment: Accepted in Astronomy & Astrophysics. 21 pages, 10 figures. Data available at the MeerKAT Fornax Survey website https://sites.google.com/inaf.it/meerkatfornaxsurve

    An Imaging Survey of Early-Type Barred Galaxies

    Full text link
    This paper presents the results of a high-resolution imaging survey, using both ground-based and Hubble Space Telescope images, of a complete sample of nearby barred S0--Sa galaxies in the field, with a particular emphasis on identifying and measuring central structures within the bars: secondary bars, inner disks, nuclear rings and spirals, and off-plane dust. A discussion of the frequency and statistical properties of the various types of inner structures has already been published. Here, we present the data for the individual galaxies and measurements of their bars and inner structures. We set out the methods we use to find and measure these structures, and how we discriminate between them. In particular, we discuss some of the deficiencies of ellipse fitting of the isophotes, which by itself cannot always distinguish between bars, rings, spirals, and dust, and which can produce erroneous measurements of bar sizes and orientations.Comment: LaTeX, 66 pages (including 42 figures, 36 in color). To appear in The Astrophysical Journal Supplement. Full-resolution and text-only versions available at http://www.iac.es/galeria/erwin/research

    The Fine-Scale Structure of the neutral Interstellar Medium in nearby Galaxies

    Get PDF
    We present an analysis of the properties of HI holes detected in 20 galaxies that are part of "The HI Nearby Galaxy Survey" (THINGS). We detected more than 1000 holes in total in the sampled galaxies. Where they can be measured, their sizes range from about 100 pc (our resolution limit) to about 2 kpc, their expansion velocities range from 4 to 36 km/s, and their ages are estimated to range between 3 and 150 Myr. The holes are found throughout the disks of the galaxies, out to the edge of the HI; 23% of the holes fall outside R25. We find that shear limits the age of holes in spirals (shear is less important in dwarf galaxies) which explains why HI holes in dwarfs are rounder, on average than in spirals. Shear, which is particularly strong in the inner part of spiral galaxies, also explains why we find that holes outside R25 are larger and older. We derive the scale height of the HI disk as a function of galactocentric radius and find that the disk flares up in all galaxies. We proceed to derive the surface and volume porosity (Q2D and Q3D) and find that this correlates with the type of the host galaxy: later Hubble types tend to be more porous. The size distribution of the holes in our sample follows a power law with a slope of a ~ -2.9. Assuming that the holes are the result of massive star formation, we derive values for the supernova rate (SNR) and star formation rate (SFR) which scales with the SFR derived based on other tracers. If we extrapolate the observed number of holes to include those that fall below our resolution limit, down to holes created by a single supernova, we find that our results are compatible with the hypothesis that HI holes result from star formation.Comment: 142 pages, 55 figures, accepted for publication in the Astronomical Journa

    The Updated Zwicky Catalog (UZC)

    Get PDF
    The Zwicky Catalog of galaxies (ZC), with m_Zw<=15.5mag, has been the basis for the Center for Astrophysics (CfA) redshift surveys. To date, analyses of the ZC and redshift surveys based on it have relied on heterogeneous sets of galaxy coordinates and redshifts. Here we correct some of the inadequacies of previous catalogs by providing: (1) coordinates with <~2 arcsec errors for all of the Nuzc catalog galaxies, (2) homogeneously estimated redshifts for the majority (98%) of the data taken at the CfA (14,632 spectra), and (3) an estimate of the remaining "blunder" rate for both the CfA redshifts and for those compiled from the literature. For the reanalyzed CfA data we include a calibrated, uniformly determined error and an indication of the presence of emission lines in each spectrum. We provide redshifts for 7,257 galaxies in the CfA2 redshift survey not previously published; for another 5,625 CfA redshifts we list the remeasured or uniformly re-reduced value. Among our new measurements, Nmul are members of UZC "multiplets" associated with the original Zwicky catalog position in the coordinate range where the catalog is 98% complete. These multiplets provide new candidates for examination of tidal interactions among galaxies. All of the new redshifts correspond to UZC galaxies with properties recorded in the CfA redshift compilation known as ZCAT. About 1,000 of our new measurements were motivated either by inadequate signal-to-noise in the original spectrum or by an ambiguous identification of the galaxy associated with a ZCAT redshift. The redshift catalog we include here is ~96% complete to m_Zw<=15.5, and ~98% complete (12,925 galaxies out of a total of 13,150) for the RA(1950) ranges [20h--4h] and [8h--17h] and DEC(1950) range [-2.5d--50d]. (abridged)Comment: 34 pp, 7 figs, PASP 1999, 111, 43
    corecore