2,382 research outputs found

    The early Pliocene Titiokura Formation: stratigraphy of a thick, mixed carbonate-siliciclastic shelf succession in Hawke's Bay Basin, New Zealand

    Get PDF
    This paper presents a systematic stratigraphic description of the architecture of the early Pliocene Titiokura Formation (emended) in the Te Waka and Maungaharuru Ranges of western Hawke's Bay, and presents a facies, sequence stratigraphic, and paleoenvironmental analysis of the sedimentary succession. The Titiokura Formation is of early Pliocene (Opoitian-Waipipian) age, and unconformably overlies Mokonui Formation, which is a regressive late Miocene and early Pliocene (Kapitean to early Opoitian) succession. In the Te Waka Range and the southern parts of the Maungaharuru Range, the Titiokura Formation comprises a single limestone sheet 20-50 m thick, with calcareous sandstone parts. In the vicinity of Taraponui Trig, and to the northeast, the results of 1:50 000 mapping show that the limestone gradually partitions into five members, which thicken markedly to the northeast to total thicknesses of c. 730 m, and concomitantly become dominated by siliciclastic sandstone. The members (all new) from lower to upper are: Naumai Member, Te Rangi Member, Taraponui Member, Bellbird Bush Member, and Opouahi Member. The lower four members are inferred to each comprise an obliquity-controlled 41 000 yr 6th order sequence, and the Opouahi Member at least two such sequences. The sequences typically have the following architectural elements from bottom to top: disconformable sequence boundary that formed as a transgressive surface of erosion; thin transgressive systems tracts (TSTs) with onlap and backlap shellbeds, or alternatively, a single compound shellbed; downlap surface; and very thick (70-200 m) highstand (HST) and regressive systems tracts (RST) composed of fine sandstone. The sequences in the Opouahi Member have cryptic TSTs, sandy siltstone to silty sandstone HSTs, and cross-bedded, differentially cemented, fine sandstone RSTs; a separate variant is an 11 m thick bioclastic limestone (grainstone and packstone) at the top of the member that crops out in the vicinity of Lake Opouahi. Lithostratigraphic correlations along the crest of the ranges suggest that the Titiokura Formation, and its correlatives to the south around Puketitiri, represent a shoreline-to-shelf linked depositional system. Carbonate production was focused around a rocky seascape as the system onlapped basement in the south, with dispersal and deposition of the comminuted carbonate on an inner shelf to the north, which was devoid of siliciclastic sediment input. The rates of both subsidence and siliciclastic sediment flux increased rapidly to the northeast of the carbonate "platform", with active progradation and offlap of the depositional system into more axial parts of Hawke's Bay Basin

    Decay dynamics of quantum dots influenced by the local density of optical states of two-dimensional photonic crystal membranes

    Get PDF
    We have performed time-resolved spectroscopy on InAs quantum dot ensembles in photonic crystal membranes. The influence of the photonic crystal is investigated by varying the lattice constant systematically. We observe a strong slow down of the quantum dots' spontaneous emission rates as the two-dimensional bandgap is tuned through their emission frequencies. The measured band edges are in full agreement with theoretical predictions. We characterize the multi-exponential decay curves by their mean decay time and find enhancement of the spontaneous emission at the bandgap edges and strong inhibition inside the bandgap in good agreement with local density of states calculations.Comment: 9 pages (preprint), 3 figure

    Involutivity of integrals for sine-Gordon, modified KdV and potential KdV maps

    Full text link
    Closed form expressions in terms of multi-sums of products have been given in \cite{Tranclosedform, KRQ} of integrals of sine-Gordon, modified Korteweg-de Vries and potential Korteweg-de Vries maps obtained as so-called (p,1)(p,-1)-traveling wave reductions of the corresponding partial difference equations. We prove the involutivity of these integrals with respect to recently found symplectic structures for those maps. The proof is based on explicit formulae for the Poisson brackets between multi-sums of products.Comment: 24 page

    Modally Resolved Fabry-Perot Experiment with Semiconductor Waveguides

    Get PDF
    Based on the interaction between different spatial modes, semiconductor Bragg-reflection waveguides provide a highly functional platform for non-linear optics. Therefore, the control and engineering of the properties of each spatial mode is essential. Despite the multimodeness of our waveguide, the well-established Fabry-Perot technique for recording fringes in the optical transmission spectrum can successfully be employed for a detailed linear optical characterization when combined with Fourier analysis. A prerequisite for the modal sensitivity is a finely resolved transmission spectrum that is recorded over a broad frequency band. Our results highlight how the features of different spatial modes, such as their loss characteristics and dispersion properties, can be separated from each other allowing their comparison. The mode-resolved measurements are important for optimizing the performance of such multimode waveguides by tailoring the properties of their spatial modes.Comment: 8 pages, 7 figure

    Janzenella theia Bremer & Talamas (Platygastroidea, Janzenellidae): a new species from Baltic amber

    Get PDF
    A new species, Janzenella theia Bremer & Talamas, sp. nov., is described from Baltic amber, which is the second known species of the family Janzenellidae (Platygastroidea). Synchrotron scanning was performed to observe internal structures and external morphology that was occluded by turbidity in the amber matrix surrounding the specimen

    Herschel evidence for disk flattening or gas depletion in transitional disks

    Get PDF
    Transitional disks are protoplanetary disks characterized by reduced near- and mid-infrared emission with respect to full disks. This characteristic spectral energy distribution indicates the presence of an optically thin inner cavity within the dust disk believed to mark the disappearance of the primordial massive disk. We present new Herschel Space Observatory PACS spectra of [OI] 63 micron for 21 transitional disks. Our survey complements the larger Herschel GASPS program "Gas in Protoplanetary Systems" (Dent et al. 2013) by quadrupling the number of transitional disks observed with PACS at this wavelength. [OI] 63 micron traces material in the outer regions of the disk, beyond the inner cavity of most transitional disks. We find that transitional disks have [OI] 63 micron line luminosities two times fainter than their full disk counterparts. We self consistently determine various stellar properties (e.g. bolometric luminosity, FUV excess, etc.) and disk properties (e.g. disk dust mass, etc.) that could influence the [OI] 63 micron line luminosity and we find no correlations that can explain the lower [OI] 63 micron line luminosities in transitional disks. Using a grid of thermo-chemical protoplanetary disk models, we conclude that either transitional disks are less flared than full disks or they possess lower gas-to-dust ratios due to a depletion of gas mass. This result suggests that transitional disks are more evolved than their full disk counterparts, possibly even at large radii.Comment: Accepted for publication in ApJ; 52 pages, 16 figures, 8 table

    Controlled lasing from active optomechanical resonators

    Get PDF
    Planar microcavities with distributed Bragg reflectors (DBRs) host, besides confined optical modes, also mechanical resonances due to stop bands in the phonon dispersion relation of the DBRs. These resonances have frequencies in the sub-terahertz (10E10-10E11 Hz) range with quality factors exceeding 1000. The interaction of photons and phonons in such optomechanical systems can be drastically enhanced, opening a new route toward manipulation of light. Here we implemented active semiconducting layers into the microcavity to obtain a vertical-cavity surface-emitting laser (VCSEL). Thereby three resonant excitations -photons, phonons, and electrons- can interact strongly with each other providing control of the VCSEL laser emission: a picosecond strain pulse injected into the VCSEL excites long-living mechanical resonances therein. As a result, modulation of the lasing intensity at frequencies up to 40 GHz is observed. From these findings prospective applications such as THz laser control and stimulated phonon emission may emerge
    corecore