6 research outputs found

    Kinetic studies of the photopolymerisation of acrylamide in aqueous solution:effects of bromoform as a Chain transfer agent

    Get PDF
    The effects of adding bromoform (CHBr3) as a potential chain transfer agent in the photopolymerisation of acrylamide (AM) in aqueous solution have been studied both in terms of influencing the rate of polymerisation and the molecular weight of the polyacrylamide (PAM) formed. Using 4,4â€Č-azo-bis(4-cyanopentanoic acid) (ACPA) as photoinitiator, two different CHBr3 concentrations as chain transfer agent were compared: 0.5 and 2.0 mol % (relative to AM), the higher of which was determined by the limit of CHBr3 water solubility. The results showed that CHBr3 was an effective chain transfer agent that could regulate the molecular weight of the PAM formed without seriously affecting the polymerisation rate. It is concluded that chain transfer to CHBr3occurs by both Br and H atom transfer although Br transfer is the more favoured due to the weaker C-Br bond. Furthermore, Br transfer leads to Br-terminated chains in which the terminal C-Br bond can re-dissociate leading to re-initiation and re-propagation of the same chain, thereby maintaining the polymerisation rate. Continuing studies into how this mechanism can be exploited in order to synthesize water-soluble block copolymers of potential biomedical importance are currently in progress

    Fabrication de micro/nano particules de polymÚre biodégradable et leur utilisation dans des applications cosmétiques et biomédicales

    No full text
    Biodegradable polymeric particles have attracted vast attention in cosmetic and biomedical fields because of its biocompatibility, non-toxicity, and degradability in natural environments. This study proposed the use of biodegradable polymers to fabricate the micro- and nanoparticles by several emulsification techniques. The first method was the fabrication of hollow nanoparticles which derived from poly(lactic acid-co-glycidyl methacrylate), P(LA-co-GMA) by one-step phase inversion emulsification. The influence of surfactant migration and evaporation rate play an important role in the hollow structure formation. The monodispersed hollow nanoparticles and good colloidal stability are obtained. These nanoparticles were applied to use as UV-shielding additives in cosmetic applications. The hollow nanoparticles showed high UVA&UVB shielding capability and low cytotoxicity. They also exhibited the stability under the UV exposure, and could be degraded under the hydrolysis system. The second one aimed to develop the thermoresponsive gating particles. Porous biodegradable micro/nanoparticles were prepared using Eudragit RS100 and poly(N-isopropylacrylamide) (PNIPAM) via a double emulsion solvent evaporation technique. The effect of initiator types on the polymerization of NIPAM monomer was influenced by the morphology, encapsulation efficiency, and loading capacity of the drug carriers. Temperature-sensitive particles possessed a swollen conformation to block the pores and prevent the diffusion of model drug at below the volume transition temperature (TVPT). In contrast, the crosslinked PNIPAM transformed to be a hydrophobicity and collapse, allowing the gate to open and release the encapsulated compound. These thermoresponsive particles remarkably showed a precise “on-off” switchable release mechanism which is easy to control drug delivery when triggered at the body temperature. Thus, these materials have a high potential for use as UV-shielding additives in cosmetic products, and drug delivery materials in biomedical and pharmaceutical applications.Les particules Ă  base de polymĂšres biodĂ©gradables ont attirĂ© une grande attention dans le domaine cosmĂ©tique et biomĂ©dical en raison de leur biocompatibilitĂ©, de leur non-toxicitĂ© et de leur dĂ©gradabilitĂ©. Cette Ă©tude propose l'utilisation de polymĂšres biodĂ©gradables pour fabriquer les micro- et nanoparticules par plusieurs techniques d'Ă©mulsification. La premiĂšre mĂ©thode est la fabrication de nanoparticules poreuses dĂ©rivĂ©es du poly(acide lactique-co-mĂ©thacrylate de glycidyle), P(LA-co-GMA) par Ă©mulsification et par inversion de phase en une Ă©tape. L'influence de la migration des tensioactifs et de la vitesse d'Ă©vaporation joue un rĂŽle important dans la formation de la structure poreuse. Les nanoparticules poreuses, monodisperses en taille et une prĂ©sentant une bonne stabilitĂ© colloĂŻdale sont obtenues. Ces nanoparticules ont Ă©tĂ© utilisĂ©es comme additifs de protection contre les UV dans des applications cosmĂ©tiques. Les nanoparticules poreuses ont montrĂ© une capacitĂ© de protection Ă©levĂ©e contre les UVA et les UVB et une faible cytotoxicitĂ©. Elles prĂ©sentaient Ă©galement une bonne stabilitĂ© sous l'exposition aux UV et peuvent ĂȘtre dĂ©gradĂ©es via hydrolyse. Le second objectif vise Ă  dĂ©velopper les particules thermosensibles. Des micro/nanoparticules poreuses biodĂ©gradables composĂ©es de Eudragit RS100 et de poly(N-isopropylacrylamide) (PNIPAM) ont Ă©tĂ© prĂ©parĂ©es via la technique double Ă©mulsion Ă©vaporation de solvant. L'effet de la nature d’amorceur sur la polymĂ©risation du monomĂšre NIPAM a Ă©tĂ© influencĂ© par la morphologie, l'efficacitĂ© d'encapsulation et le taux d’encapsulation de la molĂ©cule active. En dessous de la tempĂ©rature de transition de phase volumique (TVPT), Le PNIPAM sensibles Ă  la tempĂ©rature contenu dans les particules, possĂšde une conformation expansĂ©e obstruant les pores et empĂȘchant ainsi la diffusion du mĂ©dicament modĂšle Ă  l'extĂ©rieur. En revanche, le PNIPAM rĂ©ticulĂ© s'est transformĂ© en polymĂšre rĂ©tractĂ© et hydratĂ©, permettant ainsi l’ouverture des cavitĂ©s rĂ©servoirs et la libĂ©ration du composĂ© encapsulĂ©. Ces particules thermosensibles ont remarquablement montrĂ© un mĂ©canisme de libĂ©ration de molĂ©cule active commutable "marche-arrĂȘt" prĂ©cis est contrĂŽlable. Ainsi, ces matĂ©riaux ont un fort potentiel d'utilisation comme additifs de protection contre les UV dans les produits cosmĂ©tiques et comme matĂ©riaux d'administration de molĂ©cules actives dans les applications biomĂ©dicales et pharmaceutiques

    Fabrication de micro/nano particules de polymÚre biodégradable et leur utilisation dans des applications cosmétiques et biomédicales

    No full text
    Les particules Ă  base de polymĂšres biodĂ©gradables ont attirĂ© une grande attention dans le domaine cosmĂ©tique et biomĂ©dical en raison de leur biocompatibilitĂ©, de leur non-toxicitĂ© et de leur dĂ©gradabilitĂ©. Cette Ă©tude propose l'utilisation de polymĂšres biodĂ©gradables pour fabriquer les micro- et nanoparticules par plusieurs techniques d'Ă©mulsification. La premiĂšre mĂ©thode est la fabrication de nanoparticules poreuses dĂ©rivĂ©es du poly(acide lactique-co-mĂ©thacrylate de glycidyle), P(LA-co-GMA) par Ă©mulsification et par inversion de phase en une Ă©tape. L'influence de la migration des tensioactifs et de la vitesse d'Ă©vaporation joue un rĂŽle important dans la formation de la structure poreuse. Les nanoparticules poreuses, monodisperses en taille et une prĂ©sentant une bonne stabilitĂ© colloĂŻdale sont obtenues. Ces nanoparticules ont Ă©tĂ© utilisĂ©es comme additifs de protection contre les UV dans des applications cosmĂ©tiques. Les nanoparticules poreuses ont montrĂ© une capacitĂ© de protection Ă©levĂ©e contre les UVA et les UVB et une faible cytotoxicitĂ©. Elles prĂ©sentaient Ă©galement une bonne stabilitĂ© sous l'exposition aux UV et peuvent ĂȘtre dĂ©gradĂ©es via hydrolyse. Le second objectif vise Ă  dĂ©velopper les particules thermosensibles. Des micro/nanoparticules poreuses biodĂ©gradables composĂ©es de Eudragit RS100 et de poly(N-isopropylacrylamide) (PNIPAM) ont Ă©tĂ© prĂ©parĂ©es via la technique double Ă©mulsion Ă©vaporation de solvant. L'effet de la nature d’amorceur sur la polymĂ©risation du monomĂšre NIPAM a Ă©tĂ© influencĂ© par la morphologie, l'efficacitĂ© d'encapsulation et le taux d’encapsulation de la molĂ©cule active. En dessous de la tempĂ©rature de transition de phase volumique (TVPT), Le PNIPAM sensibles Ă  la tempĂ©rature contenu dans les particules, possĂšde une conformation expansĂ©e obstruant les pores et empĂȘchant ainsi la diffusion du mĂ©dicament modĂšle Ă  l'extĂ©rieur. En revanche, le PNIPAM rĂ©ticulĂ© s'est transformĂ© en polymĂšre rĂ©tractĂ© et hydratĂ©, permettant ainsi l’ouverture des cavitĂ©s rĂ©servoirs et la libĂ©ration du composĂ© encapsulĂ©. Ces particules thermosensibles ont remarquablement montrĂ© un mĂ©canisme de libĂ©ration de molĂ©cule active commutable "marche-arrĂȘt" prĂ©cis est contrĂŽlable. Ainsi, ces matĂ©riaux ont un fort potentiel d'utilisation comme additifs de protection contre les UV dans les produits cosmĂ©tiques et comme matĂ©riaux d'administration de molĂ©cules actives dans les applications biomĂ©dicales et pharmaceutiques.Biodegradable polymeric particles have attracted vast attention in cosmetic and biomedical fields because of its biocompatibility, non-toxicity, and degradability in natural environments. This study proposed the use of biodegradable polymers to fabricate the micro- and nanoparticles by several emulsification techniques. The first method was the fabrication of hollow nanoparticles which derived from poly(lactic acid-co-glycidyl methacrylate), P(LA-co-GMA) by one-step phase inversion emulsification. The influence of surfactant migration and evaporation rate play an important role in the hollow structure formation. The monodispersed hollow nanoparticles and good colloidal stability are obtained. These nanoparticles were applied to use as UV-shielding additives in cosmetic applications. The hollow nanoparticles showed high UVA&UVB shielding capability and low cytotoxicity. They also exhibited the stability under the UV exposure, and could be degraded under the hydrolysis system. The second one aimed to develop the thermoresponsive gating particles. Porous biodegradable micro/nanoparticles were prepared using Eudragit RS100 and poly(N-isopropylacrylamide) (PNIPAM) via a double emulsion solvent evaporation technique. The effect of initiator types on the polymerization of NIPAM monomer was influenced by the morphology, encapsulation efficiency, and loading capacity of the drug carriers. Temperature-sensitive particles possessed a swollen conformation to block the pores and prevent the diffusion of model drug at below the volume transition temperature (TVPT). In contrast, the crosslinked PNIPAM transformed to be a hydrophobicity and collapse, allowing the gate to open and release the encapsulated compound. These thermoresponsive particles remarkably showed a precise “on-off” switchable release mechanism which is easy to control drug delivery when triggered at the body temperature. Thus, these materials have a high potential for use as UV-shielding additives in cosmetic products, and drug delivery materials in biomedical and pharmaceutical applications

    Biodegradable porous micro/nanoparticles with thermoresponsive gatekeepers for effective loading and precise delivery of active compounds at the body temperature

    No full text
    International audienceAbstract Stimuli-responsive controlled delivery systems are of interest for preventing premature leakages and ensuring precise releases of active compounds at target sites. In this study, porous biodegradable micro/nanoparticles embedded with thermoresponsive gatekeepers are designed and developed based on Eudragit RS100 (PNIPAM@RS100) and poly(N-isopropylacrylamide) via a double emulsion solvent evaporation technique. The effect of initiator types on the polymerization of NIPAM monomer/methylene-bis-acrylamide (MBA) crosslinker was investigated at 60 °C for thermal initiators and ambient temperature for redox initiators. The crosslinked PNIPAM plays a key role as thermal-triggered gatekeepers with high loading efficiency and precise release of a model active compound, Nile Blue A (NB). Below the volume phase transition temperature (T VPT ), the gatekeepers possess a swollen conformation to block the pores and store NB within the cavities. Above its T VPT , the chains rearrange, allowing gate opening and a rapid and constant release rate of the compound until completion. A precise “on–off” switchable release efficiency of PNIPAM@RS100 was demonstrated by changing the temperatures to 4 and 40 °C. The materials are a promising candidate for controlled drug delivery systems with a precise and easy triggering mechanism at the body temperature for effective treatments

    Preparation of Eumelanin-Encapsulated Stereocomplex Polylactide Nano/Microparticles for Degradable Biocompatible UV-Shielding Products

    No full text
    The role of eumelanin as a natural pigment in protecting human skin from ultraviolet (UV) light has drawn vast interest in the research and industrial community. Encapsulation of the compound by various shell materials has been extensively studied to optimize and prolong its shielding efficiency from UV penetration through the skin. Polylactide (PLA)-based copolymers have been widely used in the encapsulation of various active compounds due to their biocompatibility and biodegradability that facilitate sustained release of the active compounds. In this work, stereocomplex PLA (sc-PLA) derived from mixtures of poly(D-lactide-caprolactone-D-lactide), P(DLA-b-CL-b-DLA), a triblock copolymer with linear poly(L-lactide), and PLLA are employed to encapsulate eumelanin by an oil-in-water emulsion (O/W) technique. The effect of eumelanin distribution in PLA’s enantiomers and ultrasonication on the physicochemical properties, encapsulation efficiency, and release behavior of the nano/microparticles were evaluated. The potential application of the resulting particles for sunscreen products was assessed in terms of UV absorbance and in vitro sun protection factor (SPF). The nano/microparticles show a hollow spherical structure, whose size can be controlled by ultrasonication. The distribution of eumelanin and the ultrasonication process play a key role in the growth of sc-PLA and the crystalline structure of the particles. The highest encapsulation efficiency of 46.6% was achieved for sc-PLA2U particles. The high content of eumelanin and the hollow structure with a large surface area lead to improvement in the UV absorbance and sunscreen performance of the particles, as revealed by the increase in the SPF value from 9.7 to 16.5. The materials show high potential for various applications, especially in cosmetic and pharmaceutical fields, as UV-shielding products
    corecore