189 research outputs found

    Cooperative Cognitive Automobiles

    Get PDF
    Safety requirements are among the most ambitious challenges for autonomous guidance and control of automobiles. A human-like understanding of the surrounding traffic scene is a key element to fulfill these requirements, but is a still missing capability of today's intelligent vehicles. Few recent proposals for driver assistance systems approach this issue with methods from the AI research to allow for a reasonable situation evaluation and behavior generation. While the methods proposed in this contribution are lend from cognition in order to mimic human capabilities, we argue that in the long term automated cooperation among traffic participants bears the potential to improve traffic efficiency and safety beyond the level attainable by human drivers. Both issues are major objectives of the Transregional Collaborative Research Centre 28 'cognitive automobiles,' TCRC28 that is outlined in the paper. Within this project the partners focus on systematic and interdisciplinary research on machine cognition of mobile systems as the basis for a scientific theory of automated machine behavior

    Muon Catalyzed Fusion in 3 K Solid Deuterium

    Full text link
    Muon catalyzed fusion in deuterium has traditionally been studied in gaseous and liquid targets. The TRIUMF solid-hydrogen-layer target system has been used to study the fusion reaction rates in the solid phase of D_2 at a target temperature of 3 K. Products of two distinct branches of the reaction were observed; neutrons by a liquid organic scintillator, and protons by a silicon detector located inside the target system. The effective molecular formation rate from the upper hyperfine state of μd\mu d and the hyperfine transition rate have been measured: λ~(3/2)=2.71(7)stat.(32)syst.μ/s\tilde{\lambda}_(3/2)=2.71(7)_{stat.}(32)_{syst.} \mu/s, and λ~(3/2)(1/2)=34.2(8)stat.(1)syst.μ/s\tilde{\lambda}_{(3/2)(1/2)} =34.2(8)_{stat.}(1)_{syst.} \mu /s. The molecular formation rate is consistent with other recent measurements, but not with the theory for isolated molecules. The discrepancy may be due to incomplete thermalization, an effect which was investigated by Monte Carlo calculations. Information on branching ratio parameters for the s and p wave d+d nuclear interaction has been extracted.Comment: 19 pages, 11 figures, submitted to PRA Feb 20, 199

    Measurement of the Resonant dμtd\mu t Molecular Formation Rate in Solid HD

    Get PDF
    Measurements of muon-catalyzed dt fusion (dμt→4He+n+μ−d\mu t \to ^4He+n+\mu^-) in solid HD have been performed. The theory describing the energy dependent resonant molecular formation rate for the reaction μt\mu t + HD →[(dμt)pee]∗\to [(d\mu t)pee]^* is compared to experimental results in a pure solid HD target. Constraints on the rates are inferred through the use of a Monte Carlo model developed specifically for the experiment. From the time-of- flight analysis of fusion events in 16 and 37 μg⋅cm−2\mu g\cdot cm^{-2} targets, an average formation rate consistent with 0.897±\pm(0.046)stat±_{stat}\pm (0.166)syst_{syst} times the theoretical prediction was obtained.Comment: 4 pages, 5 figure

    A high-pressure hydrogen time projection chamber for the MuCap experiment

    Full text link
    The MuCap experiment at the Paul Scherrer Institute performed a high-precision measurement of the rate of the basic electroweak process of nuclear muon capture by the proton, μ−+p→n+νμ\mu^- + p \rightarrow n + \nu_\mu. The experimental approach was based on the use of a time projection chamber (TPC) that operated in pure hydrogen gas at a pressure of 10 bar and functioned as an active muon stopping target. The TPC detected the tracks of individual muon arrivals in three dimensions, while the trajectories of outgoing decay (Michel) electrons were measured by two surrounding wire chambers and a plastic scintillation hodoscope. The muon and electron detectors together enabled a precise measurement of the μp\mu p atom's lifetime, from which the nuclear muon capture rate was deduced. The TPC was also used to monitor the purity of the hydrogen gas by detecting the nuclear recoils that follow muon capture by elemental impurities. This paper describes the TPC design and performance in detail.Comment: 15 pages, 13 figures, to be submitted to Eur. Phys. J. A; clarified section 3.1.2 and made minor stylistic corrections for Eur. Phys. J. A requirement

    Design and operation of a cryogenic charge-integrating preamplifier for the MuSun experiment

    Full text link
    The central detector in the MuSun experiment is a pad-plane time projection ionization chamber that operates without gas amplification in deuterium at 31 K; it is used to measure the rate of the muon capture process μ−+d→n+n+νμ\mu^- + d \rightarrow n + n + \nu_\mu. A new charge-sensitive preamplifier, operated at 140 K, has been developed for this detector. It achieved a resolution of 4.5 keV(D2_2) or 120 e−e^- RMS with zero detector capacitance at 1.1 μ\mus integration time in laboratory tests. In the experimental environment, the electronic resolution is 10 keV(D2_2) or 250 e−e^- RMS at a 0.5 μ\mus integration time. The excellent energy resolution of this amplifier has enabled discrimination between signals from muon-catalyzed fusion and muon capture on chemical impurities, which will precisely determine systematic corrections due to these processes. It is also expected to improve the muon tracking and determination of the stopping location.Comment: 18 pages + title page, 13 figures, to be submitted to JINST; minor corrections, added one reference, updated author lis
    • …
    corecore