research

Design and operation of a cryogenic charge-integrating preamplifier for the MuSun experiment

Abstract

The central detector in the MuSun experiment is a pad-plane time projection ionization chamber that operates without gas amplification in deuterium at 31 K; it is used to measure the rate of the muon capture process μ−+d→n+n+νμ\mu^- + d \rightarrow n + n + \nu_\mu. A new charge-sensitive preamplifier, operated at 140 K, has been developed for this detector. It achieved a resolution of 4.5 keV(D2_2) or 120 e−e^- RMS with zero detector capacitance at 1.1 μ\mus integration time in laboratory tests. In the experimental environment, the electronic resolution is 10 keV(D2_2) or 250 e−e^- RMS at a 0.5 μ\mus integration time. The excellent energy resolution of this amplifier has enabled discrimination between signals from muon-catalyzed fusion and muon capture on chemical impurities, which will precisely determine systematic corrections due to these processes. It is also expected to improve the muon tracking and determination of the stopping location.Comment: 18 pages + title page, 13 figures, to be submitted to JINST; minor corrections, added one reference, updated author lis

    Similar works

    Full text

    thumbnail-image