Muon catalyzed fusion in deuterium has traditionally been studied in gaseous
and liquid targets. The TRIUMF solid-hydrogen-layer target system has been used
to study the fusion reaction rates in the solid phase of D_2 at a target
temperature of 3 K. Products of two distinct branches of the reaction were
observed; neutrons by a liquid organic scintillator, and protons by a silicon
detector located inside the target system. The effective molecular formation
rate from the upper hyperfine state of μd and the hyperfine transition
rate have been measured: λ~(3/2)=2.71(7)stat.(32)syst.μ/s, and λ~(3/2)(1/2)=34.2(8)stat.(1)syst.μ/s.
The molecular formation rate is consistent with other recent measurements, but
not with the theory for isolated molecules. The discrepancy may be due to
incomplete thermalization, an effect which was investigated by Monte Carlo
calculations. Information on branching ratio parameters for the s and p wave
d+d nuclear interaction has been extracted.Comment: 19 pages, 11 figures, submitted to PRA Feb 20, 199