241 research outputs found

    Prevalence of mental health disorders in inflammatory bowel disease: an Australian outpatient cohort

    Full text link
    BACKGROUND: This study aimed to characterize prevalence of anxiety and depressive conditions and uptake of mental health services in an Australian inflammatory bowel disease (IBD) outpatient setting. METHODS: Eighty-one IBD patients (39 males, mean age 35 years) attending a tertiary hospital IBD outpatient clinic participated in this study. Disease severity was evaluated according to the Manitoba Index. Diagnosis of an anxiety or depressive condition was based upon the Mini-International Neuropsychiatric Interview and the Hospital Anxiety and Depression Scale. RESULTS: Based on Hospital Anxiety and Depression Scale subscale scores >8 and meeting Mini-International Neuropsychiatric Interview criteria, 16 (19.8%) participants had at least one anxiety condition, while nine (11.1%) had a depressive disorder present. Active IBD status was associated with higher prevalence rates across all anxiety and depressive conditions. Generalized anxiety was the most common (12 participants, 14.8%) anxiety condition, and major depressive disorder (recurrent) was the most common depressive condition reported (five participants, 6.2%). Seventeen participants (21%) reported currently seeking help for mental health issues while 12.4% were identified has having at least one psychological condition but not seeking treatment. CONCLUSION: We conclude that rates of anxiety and depression are high in this cohort, and that IBD-focused psychological services should be a key component of any holistic IBD service, especially for those identified as having active IBD

    Formation and optogenetic control of engineered 3D skeletal muscle bioactuators

    Get PDF
    Densely arrayed skeletal myotubes are activated individually and as a group using precise optical stimulation with high spatiotemporal resolution. Skeletal muscle myoblasts are genetically encoded to express a light-activated cation channel, Channelrhodopsin-2, which allows for spatiotemporal coordination of a multitude of skeletal myotubes that contract in response to pulsed blue light. Furthermore, ensembles of mature, functional 3D muscle microtissues have been formed from the optogenetically encoded myoblasts using a high-throughput device. The device, called “skeletal muscle on a chip”, not only provides the myoblasts with controlled stress and constraints necessary for muscle alignment, fusion and maturation, but also facilitates the measurement of forces and characterization of the muscle tissue. We measured the specific static and dynamic stresses generated by the microtissues and characterized the morphology and alignment of the myotubes within the constructs. The device allows testing of the effect of a wide range of parameters (cell source, matrix composition, microtissue geometry, auxotonic load, growth factors and exercise) on the maturation, structure and function of the engineered muscle tissues in a combinatorial manner. Our studies integrate tools from optogenetics and microelectromechanical systems (MEMS) technology with skeletal muscle tissue engineering to open up opportunities to generate soft robots actuated by a multitude of spatiotemporally coordinated 3D skeletal muscle microtissues.National Science Foundation (U.S.) (Science and Technology Center—Emergent Behaviors of Integrated Cellular Systems (EBICS) grant No. CBET-0939511)National Institutes of Health (U.S.) (EB00262)National Science Foundation (U.S.) (GM74048)National Science Foundation (U.S.) (HL90747)National Institute for Biomedical Imaging and Bioengineering (U.S.) (RESBIO, Integrapted Technologies for Polymeric Biomaterial)University of Pennsylvania. Center for Engineering Cells and RegenerationSingapore-MIT Alliance for Research and Technolog

    Human Vascular Tissue Models Formed from Human Induced Pluripotent Stem Cell Derived Endothelial Cells

    Get PDF
    Here we describe a strategy to model blood vessel development using a well-defined induced pluripotent stem cell-derived endothelial cell type (iPSC-EC) cultured within engineered platforms that mimic the 3D microenvironment. The iPSC-ECs used here were first characterized by expression of endothelial markers and functional properties that included VEGF responsiveness, TNF-α-induced upregulation of cell adhesion molecules (MCAM/CD146; ICAM1/CD54), thrombin-dependent barrier function, shear stress-induced alignment, and 2D and 3D capillary-like network formation in Matrigel. The iPSC-ECs also formed 3D vascular networks in a variety of engineering contexts, yielded perfusable, interconnected lumen when co-cultured with primary human fibroblasts, and aligned with flow in microfluidics devices. iPSC-EC function during tubule network formation, barrier formation, and sprouting was consistent with that of primary ECs, and the results suggest a VEGF-independent mechanism for sprouting, which is relevant to therapeutic anti-angiogenesis strategies. Our combined results demonstrate the feasibility of using a well-defined, stable source of iPSC-ECs to model blood vessel formation within a variety of contexts using standard in vitro formats.National Institutes of Health (U.S.) (NIH 1UH2 TR000506-01)National Institutes of Health (U.S.) (3UH2 TR000506-02S1)National Institutes of Health (U.S.) (T32 HL007936-12)National Institutes of Health (U.S.) (RO1 HL093282)National Institutes of Health (U.S.) (R21 EB016381-01

    Swiss QUality of life and healthcare impact Assessment in a Real-world Erenumab treated migraine population (SQUARE study): interim results.

    Get PDF
    BACKGROUND The fully human monoclonal antibody erenumab, which targets the calcitonin gene-related peptide (CGRP) receptor, was licensed in Switzerland in July 2018 for the prophylactic treatment of migraine. To complement findings from the pivotal program, this observational study was designed to collect and evaluate clinical data on the impact of erenumab on several endpoints, such as quality of life, migraine-related impairment and treatment satisfaction in a real-world setting. METHODS An interim analysis was conducted after all patients completed 6 months of erenumab treatment. Patients kept a headache diary and completed questionnaires at follow up visits. The overall study duration comprises 24 months. RESULTS In total, 172 adults with chronic or episodic migraine from 19 different sites across Switzerland were enrolled to receive erenumab every 4 weeks. At baseline, patients had 16.6 ± 7.2 monthly migraine days (MMD) and 11.6 ± 7.0 acute migraine-specific medication days per month. After 6 months, erenumab treatment reduced Headache Impact Test (HIT-6™) scores by 7.7 ± 8.4 (p < 0.001), the modified Migraine Disability Assessment (mMIDAS) by 14.1 ± 17.8 (p < 0.001), MMD by 7.6 ± 7.0 (p < 0.001) and acute migraine-specific medication days per month by 6.6 ± 5.4 (p < 0.001). Erenumab also reduced the impact of migraine on social and family life, as evidenced by a reduction of Impact of Migraine on Partners and Adolescent Children (IMPAC) scores by 6.1 ± 6.7 (p < 0.001). Patients reported a mean effectiveness of 67.1, convenience of 82.4 and global satisfaction of 72.4 in the Treatment Satisfaction Questionnaire for Medication (TSQM-9). In total, 99 adverse events (AE) and 12 serious adverse events (SAE) were observed in 62 and 11 patients, respectively. All SAE were regarded as not related to the study medication. CONCLUSIONS Overall quality of life improved and treatment satisfaction was rated high with erenumab treatment in real-world clinical practice. In addition, the reported impact of migraine on spouses and children of patients was reduced. TRIAL REGISTRATION BASEC ID 2018-02,375 in the Register of All Projects in Switzerland (RAPS)

    Swiss QUality of life and healthcare impact Assessment in a Real-world Erenumab treated migraine population (SQUARE study): interim results

    Full text link
    BACKGROUND The fully human monoclonal antibody erenumab, which targets the calcitonin gene-related peptide (CGRP) receptor, was licensed in Switzerland in July 2018 for the prophylactic treatment of migraine. To complement findings from the pivotal program, this observational study was designed to collect and evaluate clinical data on the impact of erenumab on several endpoints, such as quality of life, migraine-related impairment and treatment satisfaction in a real-world setting. METHODS An interim analysis was conducted after all patients completed 6 months of erenumab treatment. Patients kept a headache diary and completed questionnaires at follow up visits. The overall study duration comprises 24 months. RESULTS In total, 172 adults with chronic or episodic migraine from 19 different sites across Switzerland were enrolled to receive erenumab every 4 weeks. At baseline, patients had 16.6 ± 7.2 monthly migraine days (MMD) and 11.6 ± 7.0 acute migraine-specific medication days per month. After 6 months, erenumab treatment reduced Headache Impact Test (HIT-6™) scores by 7.7 ± 8.4 (p < 0.001), the modified Migraine Disability Assessment (mMIDAS) by 14.1 ± 17.8 (p < 0.001), MMD by 7.6 ± 7.0 (p < 0.001) and acute migraine-specific medication days per month by 6.6 ± 5.4 (p < 0.001). Erenumab also reduced the impact of migraine on social and family life, as evidenced by a reduction of Impact of Migraine on Partners and Adolescent Children (IMPAC) scores by 6.1 ± 6.7 (p < 0.001). Patients reported a mean effectiveness of 67.1, convenience of 82.4 and global satisfaction of 72.4 in the Treatment Satisfaction Questionnaire for Medication (TSQM-9). In total, 99 adverse events (AE) and 12 serious adverse events (SAE) were observed in 62 and 11 patients, respectively. All SAE were regarded as not related to the study medication. CONCLUSIONS Overall quality of life improved and treatment satisfaction was rated high with erenumab treatment in real-world clinical practice. In addition, the reported impact of migraine on spouses and children of patients was reduced. TRIAL REGISTRATION BASEC ID 2018-02,375 in the Register of All Projects in Switzerland (RAPS)

    The ARCA Registry: A Collaborative Global Platform for Advancing Trial Readiness in Autosomal Recessive Cerebellar Ataxias.

    Get PDF
    Autosomal recessive cerebellar ataxias (ARCAs) form an ultrarare yet expanding group of neurodegenerative multisystemic diseases affecting the cerebellum and other neurological or non-neurological systems. With the advent of targeted therapies for ARCAs, disease registries have become a precious source of real-world quantitative and qualitative data complementing knowledge from preclinical studies and clinical trials. Here, we review the ARCA Registry, a global collaborative multicenter platform (>15 countries, >30 sites) with the overarching goal to advance trial readiness in ARCAs. It presents a good clinical practice (GCP)- and general data protection regulation (GDPR)-compliant professional-reported registry for multicenter web-based capture of cross-center standardized longitudinal data. Modular electronic case report forms (eCRFs) with core, extended, and optional datasets allow data capture tailored to the participating site's variable interests and resources. The eCRFs cover all key data elements required by regulatory authorities [European Medicines Agency (EMA)] and the European Rare Disease (ERD) platform. They capture genotype, phenotype, and progression and include demographic data, biomarkers, comorbidity, medication, magnetic resonance imaging (MRI), and longitudinal clinician- or patient-reported ratings of ataxia severity, non-ataxia features, disease stage, activities of daily living, and (mental) health status. Moreover, they are aligned to major autosomal-dominant spinocerebellar ataxia (SCA) and sporadic ataxia (SPORTAX) registries in the field, thus allowing for joint and comparative analyses not only across ARCAs but also with SCAs and sporadic ataxias. The registry is at the core of a systematic multi-component ARCA database cluster with a linked biobank and an evolving study database for digital outcome measures. Currently, the registry contains more than 800 patients with almost 1,500 visits representing all ages and disease stages; 65% of patients with established genetic diagnoses capture all the main ARCA genes, and 35% with unsolved diagnoses are targets for advanced next-generation sequencing. The ARCA Registry serves as the backbone of many major European and transatlantic consortia, such as PREPARE, PROSPAX, and the Ataxia Global Initiative, with additional data input from SPORTAX. It has thus become the largest global trial-readiness registry in the ARCA field

    AMBER : a near infrared focal instrument for the VLTI

    Get PDF
    10 pagesInternational audienceAMBER is the General User near-infrared focal instrument of the Very Large Telescope interferometer. Its specifications are based on three key programs on Young Stellar Objects, Active Galactic Nuclei central regions, masses and spectra of hot Extra Solar Planets. It has an imaging capacity because it combines up to three beams and very high accuracy measurement are expected from the spatial filtering of beams by single mode fibers and the comparison of measurements made simultaneously in different spectral channels

    Tension, Free Space, and Cell Damage in a Microfluidic Wound Healing Assay

    Get PDF
    We use a novel, microfluidics-based technique to deconstruct the classical wound healing scratch assay, decoupling the contribution of free space and cell damage on the migratory dynamics of an epithelial sheet. This method utilizes multiple laminar flows to selectively cleave cells enzymatically, and allows us to present a 'damage free' denudation. We therefore isolate the influence of free space on the onset of sheet migration. First, we observe denudation directly to measure the retraction in the cell sheet that occurs after cell-cell contact is broken, providing direct and quantitative evidence of strong tension within the sheet. We further probe the mechanical integrity of the sheet without denudation, instead using laminar flows to selectively inactivate actomyosin contractility. In both cases, retraction is observed over many cell diameters. We then extend this method and complement the enzymatic denudation with analogies to wounding, including gradients in signals associated with cell damage, such as reactive oxygen species, suspected to play a role in the induction of movement after wounding. These chemical factors are evaluated in combination with the enzymatic cleavage of cells, and are assessed for their influence on the collective migration of a non-abrasively denuded epithelial sheet. We conclude that free space alone is sufficient to induce movement, but this movement is predominantly limited to the leading edge, leaving cells further from the edge less able to move towards the wound. Surprisingly, when coupled with a gradient in ROS to simulate the chemical effects of abrasion however, motility was not restored, but further inhibited.Massachusetts Institute of Technology. Presidential FellowshipNational Institutes of Health (U.S.). Biotechnology Training FellowshipSingapore-MIT Alliance for Research and TechnologyMassachusetts Institute of Biotechnology Training GrantMassachusetts Institute of Technology (Open-source Funding
    corecore