123 research outputs found

    Small Angle X-Ray Scattering of Neutron- and Electro-Irradiated Pd_<80>Si_<20> Amorphous Alloy

    Get PDF
    Small angle X-ray scatterig (SAXS) was measured for neutron- and electron-irradiated Pd_Si_ amorphous alloy. The experimental SAXS intensity curves are well approximated by the Guinier formula below h=0.04 A ^. The radii of gyration are almost same between electron-irradiated and aged sample, while neutron-irradiated sample shows a small radius of gyration

    Numerical Simulation of the Solid Particle Sedimentation and Bed Formation Behaviors Using a Hybrid Method

    Get PDF
    In the safety analysis of sodium-cooled fast reactors, numerical simulations of various thermal-hydraulic phenomena with multicomponent and multiphase flows in core disruptive accidents (CDAs) are regarded as particularly difficult. In the material relocation phase of CDAs, core debris settle down on a core support structure and/or an in-vessel retention device and form a debris bed. The bed’s shape is crucial for the subsequent relocation of the molten core and heat removal capability as well as re-criticality. In this study, a hybrid numerical simulation method, coupling the multi-fluid model of the three-dimensional fast reactor safety analysis code SIMMER-IV with the discrete element method (DEM), was applied to analyze the sedimentation and bed formation behaviors of core debris. Three-dimensional simulations were performed and compared with results obtained in a series of particle sedimentation experiments. The present simulation predicts the sedimentation behavior of mixed particles with different properties as well as homogeneous particles. The simulation results on bed shapes and particle distribution in the bed agree well with experimental measurements. They demonstrate the practicality of the present hybrid method to solid particle sedimentation and bed formation behaviors of mixed as well as homogeneous particles

    Dependences of the Optical Absorption, Ground State Energy Level, and Interfacial Electron Transfer Dynamics on the Size of CdSe Quantum Dots Adsorbed on the (001), (110), and (111) Surfaces of Single Crystal Rutile TiO2

    Get PDF
    Quantum dots (QDs) provide an attractive alternative sensitizer to organic dyes. However, there have been few reports on QD-sensitized solar cells (QDSCs) that have photovoltaic conversion efficiencies exceeding those of dye-sensitized solar cells. This is because of the lack of fundamental studies of QDs on conventional nanocrystalline metal oxide electrodes which possess much amount of heterogeneity. An important first step is an investigation of the dependences of the optical absorption, the ground state energy level, and the interfacial electron transfer (IET) on the size of QDs deposited on well characterized single crystal oxides. The present study focuses on a system of CdSe QDs adsorbed on the (001), (110), and (111) surfaces of single crystal rutile-TiO2. The optical absorption spectra, characterized using photoacoustic spectroscopy, were found to be independent of the surface orientation concerning the optical absorption edge. The exponential optical absorption tail (Urbach tail) suggests that the disorder decreases with the increasing size of the QDs and is independent of the surface orientation. The ground state energy levels of the QDs were characterized using photoelectron yield spectroscopy. That on the (001) surface shifts upward, while that on the (110) surface shifts downward with increasing QD size. That on the (111) surface is independent of the QD size, indicating the difference of the influence of the surface orientation on adsorption of the QDs. The IET rate constant and the relaxation component were characterized. The IET rate constant was found to decrease as the size of the QDs increases and depends on the surface orientation, indicating the differences in the decrease of the free energy change and lower coupling between the excited state of CdSe QDs and the Ti 3d orbitals in rutile-TiO2. The relaxation component increases with increasing QD size and depends on the surface orientation, correlating with the density of states in the conduction band of rutile-TiO2

    The phenotype of infiltrating macrophages influences arteriosclerotic plaque vulnerability in the carotid artery

    Get PDF
    Background: Proinflammatory (M1) macrophages and anti-inflammatory (M2) macrophages have been identified in atherosclerotic plaques. While these macrophages have been speculated to be related to plaque vulnerability, there are limited studies investigating this relationship. Therefore, we examined the association between macrophage phenotype (M1 versus M2) and plaque vulnerability and clinical events. Methods: Patients undergoing carotid endarterectomy received an ultrasound of the carotid artery before surgery. Plaques were processed for analysis by immunohistochemistry, Western blotting, and real-time polymerase chain reaction studies. Medical history and clinical data were obtained from medical records. Results: Patients were divided into 2 groups: those suffering from acute ischemic attack (symptomatic, n = 31) and those that did not present with symptoms (asymptomatic, n = 34). Ultrasound analysis revealed that plaque vulnerability was greater in the symptomatic group (P= .033; Chi-square test). Immunohistochemistry revealed that plaques from the symptomatic group had a greater concentration of M1 macrophages (CD68-, CD11c-positive) while plaques from the asymptomatic group had more M2 macrophages (CD163-positive). This observation was confirmed by Western blotting. Characterization by real-time polymerase chain reaction studies revealed that plaques from the symptomatic group had increased expression of the M1 markers CD68 and CD11c, as well as monocyte chemoattractive protein-1, interleukin-6, and matrix metalloproteinase-9. In addition, more M1 macrophages expressed in unstable plaques were defined by ultrasound analysis, while more M2 macrophages were expressed in stable plaques. Conclusions: Our data show that M1 macrophage content of atherosclerotic plaques is associated with clinical incidence of ischemic stroke and increased inflammation or fibrinolysis. We also show the benefits of using ultrasound to evaluate vulnerability in the plaques

    Survival outcomes of hepatectomy for stage B Hepatocellular carcinoma in the BCLC classification

    Get PDF
    Background: Because hepatectomy is not recommended in patients with stage B hepatocellular carcinoma (HCC) of the Barcelona Clinic Liver Cancer (BCLC) staging, we evaluated the survival outcomes of hepatectomy for stage B in the BCLC system. Methods: Data were collected from 297 consecutive adult stage B patients who underwent curative hepatectomy for HCC between 1996 and 2014 in Hokkaido University Hospital. Overall survival (OS), disease-free survival (DFS), and risk factors were analyzed using the Kaplan-Meier method. Independent prognostic factors were evaluated using a Cox proportional hazards regression model. AP-factor (alpha-fetoprotein [AFP] × protein induced by vitamin K absence or antagonism factor II [PIVKA-II]) was categorized according to the serum concentrations of AFP and PIVKA-II: AP1 (AFP < 200 ng/ml and PIVKA-II < 100 mAU/ml), AP2 (AFP × PIVKA-II < 10^5), and AP3 (AFP × PIVKA-II ≥ 10^5). Results: There were 130 deaths among our 297 stage B patients (43.8%). The causes of death in these cases were HCC recurrence (n = 106; 81.5%), liver failure (n = 7; 5.4%), and other causes (n = 17; 16.1%). The operative mortality rate was 0.34% (1/297). The 5-year OS and DFS rates for the stage B cases were 54.3 and 21.9%, respectively. By multivariate analysis, tumor number and AP-factor were risk factors for both survival and recurrence that were tumor related and could be evaluated preoperatively. The study patients with stage B HCC were classified into three groups by tumor number (B1, 1; B23, 2 or 3; B4over: ≥4) and into three groups stratified by AP-factor (AP1, AP2, and AP3). The 5-year OS rates of B1, B23, and B4over were 63.6, 52.3, and 29.0%. The 5-year OS rates of AP1, AP2, and AP3 were 67.6, 65.2, and 39.1%. Stratified by the 5-year OS rate, stage B HCC patients were classified into three subgroups (A-C).The 5-year OS rates of groups A (B1 or B23 and AP-1 or AP-2), B (B1 or B23 and AP-3, or B4over and AP-1 or AP-2), and C (B4over and AP-3) were 69.5, 43.7, and 21.3%. Conclusion: Stage B HCC patients with a tumor number ≤ 3 and/or AP-factor < 1 × 10^5 show acceptable 5-year OS rates and could be treated by hepatectomy

    Low-Dose Intravenous Alteplase in Wake-Up Stroke

    Get PDF
    Background and Purpose—We assessed whether lower-dose alteplase at 0.6 mg/kg is efficacious and safe for acute fluid-attenuated inversion recovery-negative stroke with unknown time of onset. Methods—This was an investigator-initiated, multicenter, randomized, open-label, blinded-end point trial. Patients met the standard indication criteria for intravenous thrombolysis other than a time last-known-well >4.5 hours (eg, wake-up stroke). Patients were randomly assigned (1:1) to receive alteplase at 0.6 mg/kg or standard medical treatment if magnetic resonance imaging showed acute ischemic lesion on diffusion-weighted imaging and no marked corresponding hyperintensity on fluid-attenuated inversion recovery. The primary outcome was a favorable outcome (90-day modified Rankin Scale score of 0–1). Results—Following the early stop and positive results of the WAKE-UP trial (Efficacy and Safety of MRI-Based Thrombolysis in Wake-Up Stroke), this trial was prematurely terminated with 131 of the anticipated 300 patients (55 women; mean age, 74.4±12.2 years). Favorable outcome was comparable between the alteplase group (32/68, 47.1%) and the control group (28/58, 48.3%; relative risk [RR], 0.97 [95% CI, 0.68–1.41]; P=0.892). Symptomatic intracranial hemorrhage within 22 to 36 hours occurred in 1/71 and 0/60 (RR, infinity [95% CI, 0.06 to infinity]; P>0.999), respectively. Death at 90 days occurred in 2/71 and 2/60 (RR, 0.85 [95% CI, 0.06–12.58]; P>0.999), respectively. Conclusions—No difference in favorable outcome was seen between alteplase and control groups among patients with ischemic stroke with unknown time of onset. The safety of alteplase at 0.6 mg/kg was comparable to that of standard treatment. Early study termination precludes any definitive conclusions

    Pulsed neutron spectroscopic imaging for crystallographic texture and microstructure

    Get PDF
    A time-of-flight (TOF) spectroscopic neutron imaging at a pulsed neutron source is expected to be a new material analysis tool because this method can non-destructively investigate the spatial dependence of the crystallographic and metallographic information in a bulk material. For quantitative evaluation of such information, a spectral analysis code for the transmission data is necessary. Therefore, we have developed a Rietveld-like analysis code, RITS. Furthermore, we have applied the RITS code to evaluation of the position dependence of the crystal orientation anisotropy, the preferred orientation and the crystallite size of a welded α-iron plate, and we have successfully obtained the information on the texture and the microstructure. However, the reliability of the values given by the RITS code has not been evaluated yet in detail. For this reason, we compared the parameters provided by the RITS code with the parameters obtained by the neutron TOF powder diffractometry and its Rietveld analysis. Both the RITS code and the Rietveld analysis software indicated values close to each other, but there were systematic differences on the preferred orientation and the crystallite size
    corecore