387 research outputs found
Dislocation Free Island Formation in Heteroepitaxial Growth: An Equilibrium Study
We investigate the equilibrium properties of strained heteroepitaxial
systems, incorporating the formation and the growth of a wetting film,
dislocation free island formation, and ripening. The derived phase diagram
provides a detailed characterization of the possible growth modes in terms of
the island density, equilibrium island size, and wetting layer thickness.
Comparing our predictions with experimental results we discuss the growth
conditions that can lead to stable islands as well as ripening.Comment: 4 pages, LaTeX, 3 ps figure
A Space and Atmospheric Visualization Science System
SAVS (a Space and Atmospheric Visualization Science system) is an integrated system with user-friendly functionality that employs a 'push-button' software environment that mimics the logical scientific processes in data acquisition, reduction, analysis, and visualization. All of this is accomplished without requiring a detailed understanding of the methods, networks, and modules that link the tools and effectively execute the functions. This report describes SAVS and its components, followed by several applications based on generic research interests in interplanetary and magnetospheric physics (IMP/ISTP), active experiments in space (CRRES), and mission planning focused on the earth's thermospheric, ionospheric, and mesospheric domains (TIMED). The final chapters provide a user-oriented description of interface functionalities, hands-on operations, and customized modules, with details of the primary modules presented in the appendices. The overall intent of the report is to reflect the accomplishments of the three-year development effort and to introduce potential users to the power and utility of the integrated data acquisition, analysis, and visualization system
Ordered Arrays of SiGe Islands from Low-Energy PECVD
SiGe islands have been proposed for applications in the fields of microelectronics, optoelectronics and thermoelectrics. Although most of the works in literature are based on MBE, one of the possible advantages of low-energy plasma-enhanced chemical vapor deposition (LEPECVD) is a wider range of deposition rates, which in turn results in the possibility of growing islands with a high Ge concentration. We will show that LEPECVD can be effectively used for the controlled growth of ordered arrays of SiGe islands. In order to control the nucleation of the islands, patterned Si (001) substrates were obtained by e-beam lithography (EBL) and dry etching. We realized periodic circular pits with diameters ranging from 80 to 300 nm and depths from 65 to 75 nm. Subsequently, thin films (0.8–3.2 nm) of pure Ge were deposited by LEPECVD, resulting in regular and uniform arrays of Ge-rich islands. LEPECVD allowed the use of a wide range of growth rates (0.01–0.1 nm s−1) and substrates temperatures (600–750°C), so that the Ge content of the islands could be varied. Island morphology was characterized by AFM, while μ-Raman was used to analyze the Ge content inside the islands and the composition differences between islands on patterned and unpatterned areas of the substrate
GaAs:Mn nanowires grown by molecular beam epitaxy of (Ga,Mn)As at MnAs segregation conditions
GaAs:Mn nanowires were obtained on GaAs(001) and GaAs(111)B substrates by
molecular beam epitaxial growth of (Ga,Mn)As at conditions leading to MnAs
phase separation. Their density is proportional to the density of catalyzing
MnAs nanoislands, which can be controlled by the Mn flux and/or the substrate
temperature. Being rooted in the ferromagnetic semiconductor (Ga,Mn)As, the
nanowires combine one-dimensional properties with the magnetic properties of
(Ga,Mn)As and provide natural, self assembled structures for nanospintronics.Comment: 13 pages, 6 figure
Generalized Drude model: Unification of ballistic and diffusive electron transport
For electron transport in parallel-plane semiconducting structures, a model
is developed that unifies ballistic and diffusive transport and thus
generalizes the Drude model. The unified model is valid for arbitrary magnitude
of the mean free path and arbitrary shape of the conduction band edge profile.
Universal formulas are obtained for the current-voltage characteristic in the
nondegenerate case and for the zero-bias conductance in the degenerate case,
which describe in a transparent manner the interplay of ballistic and diffusive
transport. The semiclassical approach is adopted, but quantum corrections
allowing for tunneling are included. Examples are considered, in particular the
case of chains of grains in polycrystalline or microcrystalline semiconductors
with grain size comparable to, or smaller than, the mean free path. Substantial
deviations of the results of the unified model from those of the ballistic
thermionic-emission model and of the drift-diffusion model are found. The
formulation of the model is one-dimensional, but it is argued that its results
should not differ substantially from those of a fully three-dimensional
treatment.Comment: 14 pages, 5 figures, REVTEX file, to appear in J. Phys.: Condens.
Matte
Ultra-steep side facets in multi-faceted SiGe/Si(001) Stranski-Krastanow islands
For the prototypical Ge/Si(001) system, we show that at high growth temperature a new type of Stranski-Krastanow islands is formed with side facets steeper than {111} and high aspect ratio. Nano-goniometric analysis of the island shapes reveals the presence of six new facet groups in addition to those previously found for dome or barn-shaped islands. Due to the highly multi-faceted island shape and high aspect ratio, the new island types are named "cupola" islands and their steepest {12 5 3} side facet is inclined by 68°to the substrate surface. Assessing the relative stability of the new facets from surface area analysis, we find that their stability is similar to that of {113} and {15 3 23} facets of dome islands. The comparison of the different island shapes shows that they form a hierarchical class of geometrical structures, in which the lower aspect ratio islands of barns, domes and pyramids are directly derived from the cupola islands by successive truncation of the pedestal bases without facet rearrangements. The results underline the key role of surface faceting in the process of island formation, which is as crucial for understanding the island's growth evolution as it is important for device applications
A framework for the study of zoonotic disease emergence and its drivers: spillover of bat pathogens as a case study
Many serious emerging zoonotic infections have recently arisen from bats, including Ebola, Marburg, SARS-coronavirus, Hendra, Nipah, and a number of rabies and rabies-related viruses, consistent with the overall observation that wildlife are an important source of emerging zoonoses for the human population. Mechanisms underlying the recognized association between ecosystem health and human health remain poorly understood and responding appropriately to the ecological, social and economic conditions that facilitate disease emergence and transmission represents a substantial societal challenge. In the context of disease emergence from wildlife, wildlife and habitat should be conserved, which in turn will preserve vital ecosystem structure and function, which has broader implications for human wellbeing and environmental sustainability, while simultaneously minimizing the spillover of pathogens from wild animals into human beings. In this review, we propose a novel framework for the holistic and interdisciplinary investigation of zoonotic disease emergence and its drivers, using the spillover of bat pathogens as a case study. This study has been developed to gain a detailed interdisciplinary understanding, and it combines cutting-edge perspectives from both natural and social sciences, linked to policy impacts on public health, land use and conservation
A framework for the study of zoonotic disease emergence and its drivers: spillover of bat pathogens as a case study
Many serious emerging zoonotic infections have recently arisen from bats, including Ebola, Marburg, SARS-coronavirus, Hendra, Nipah, and a number of rabies and rabies-related viruses, consistent with the overall observation that wildlife are an important source of emerging zoonoses for the human population. Mechanisms underlying the recognized association between ecosystem health and human health remain poorly understood and responding appropriately to the ecological, social and economic conditions that facilitate disease emergence and transmission represents a substantial societal challenge. In the context of disease emergence from wildlife, wildlife and habitat should be conserved, which in turn will preserve vital ecosystem structure and function, which has broader implications for human wellbeing and environmental sustainability, while simultaneously minimizing the spillover of pathogens from wild animals into human beings. In this review, we propose a novel framework for the holistic and interdisciplinary investigation of zoonotic disease emergence and its drivers, using the spillover of bat pathogens as a case study. This study has been developed to gain a detailed interdisciplinary understanding, and it combines cutting-edge perspectives from both natural and social sciences, linked to policy impacts on public health, land use and conservation
Lateral overgrowth of germanium for monolithic integration of germanium-on-insulator on silicon
A technique to locally grow germanium-on-insulator (GOI) structure on silicon (Si) platform is studied. On (001) Si wafer, silicon dioxide (SiO2) is thermally grown and patterned to define growth window for germanium (Ge). Crystalline Ge is grown via selective hetero-epitaxy, using SiO2 as growth mask. Lateral overgrowth of Ge crystal covers SiO2 surface and neighboring Ge crystals coalesce with each other. Therefore, single crystalline Ge sitting on insulator for GOI applications is achieved. Chemical mechanical polishing (CMP) is performed to planarize the GOI surface. Transmission electron microscopy (TEM) analysis, Raman spectroscopy, and time-resolved photoluminescence (TRPL) show high quality crystalline Ge sitting on SiO2. Optical response from metal-semiconductor-metal (MSM) photodetector shows good optical absorption at 850 nm and 1550 nm wavelength. © 2015 Elsevier B.V. All rights reserved
- …