719 research outputs found

    RANKL directly induces bone morphogenetic protein-2 expression in RANK-expressing POS-1 osteosarcoma cells

    Get PDF
    International audienceThe POS-1 murine model of osteolytic osteosarcoma was used to elucidate the molecular and cellular mechanisms involved in the development of primary bone tumors and associated lung metastasis. The POS-1 cell line is derived from an osteosarcoma tumor which develops spontaneously in C3H mice. The POS-1 cell line was characterized in vitro by mineralization capacity and expression of bone markers by semi-quantitative RT-PCR, compared to primary osteoblasts and bone marrow cells. POS-1 cells showed no mineralization capacity and exhibited an undifferentiated phenotype, expressing both osteoblastic and unexpected osteoclastic markers (TRAP, cathepsin K and RANK). Thereby, experiments were performed to determine whether RANK was functional, by studying the biological activity of murine RANKL through the receptor RANK expressed on POS-1 cells. Results revealed a RANKL-induced increase in ERK phosphorylation, as well as BMP-2 induction at the mRNA and protein levels, and a decrease of POS-1 cell proliferation in the presence of 10 ng/ml RANKL. BMP-2 induction is dependent on the ERK 1/2 signal transduction pathway, as its expression is abolished in the presence of UO126, a specific synthetic inhibitor of the ERK 1/2 pathway. Moreover, a 2-fold molar excess of soluble RANK blocks the RANKL-induced BMP-2 expression, demonstrating that the biological effects of RANKL observed in POS-1 cells are mediated by RANK. This is the first report describing a functional RANK expressed on osteosarcoma cells, as shown by its ability to induce signal transduction pathways and biological activity when stimulated by RANKL

    On Ultrasmall Silicate Grains in the Diffuse Interstellar Medium

    Get PDF
    The abundance of both amorphous and crystalline silicates in very small grains is limited by the fact that the 10 micron silicate emission feature is not detected in the diffuse ISM. On the basis of the observed IR emission spectrum for the diffuse ISM, the observed ultraviolet extinction curve, and the 10 micron silicate absorption profile, we obtain upper limits on the abundances of ultrasmall (a < 15 Angstrom) amorphous and crystalline silicate grains. Contrary to previous work, as much as ~20% of interstellar Si could be in a < 15 Angstrom silicate grains without violating observational constraints. Not more than ~5% of the Si can be in crystalline silicates (of any size).Comment: Submitted to ApJ Letters, 11 pages, 4 figures, Late

    Significance of chemokine receptor expression in aggressive NK cell leukemia

    Get PDF
    ArticleLEUKEMIA. 19(7): 1169-1174 (2005)journal articl

    Galactosemia produces ARI-preventable nodal changes similar to those of diabetic neuropathy

    Full text link
    The present study was designed to examine the development of structural changes, characteristic of diabetic neuropathy, in chronic galactosemia and their responsiveness to inhibition of the polyol-pathway. Sprague-Dawley rats weighing 70-90 g were given a 50% galactose diet continued for 4 or 8 months. Half of these animals were simultaneously given the aldose reductase inhibitor (ARI) WAY 121-509. ARI-treatment normalized galactitol and myoinositol levels in the sciatic nerve. At 4 months, sciatic nerve conduction velocity (NCV) in galactosemic rats was reduced by 30% which was prevented in ARI-treated rats. At 8 months galactosemia reduced NCV to 58% of control values, while ARI-treatment for 8 months improved NCV to 71% of control values. ARI-treatment prevented in galactosemic rats nodal structural changes characteristic of diabetic neuropathy, whereas axonal atrophy was not affected by ARI-treatment, which may in part account for the only partial prevention of the NCV slowing at 8 months. Nerve fiber regeneration was increased 4-fold in ARI-treated rats compared with untreated galactosemic rats. These data suggest that chronic galactosemia produces a neuropathy structurally similar to diabetic neuropathy. The lack of an ARI-treatment effect on axonal atrophy suggests that this defect is not polyol related in galactosemia.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/31346/1/0000256.pd

    Transgenic and Knockout Mice Models to Reveal the Functions of Tumor Suppressor Genes

    Get PDF
    Cancer is caused by multiple genetic alterations leading to uncontrolled cell proliferation through multiple pathways. Malignant cells arise from a variety of genetic factors, such as mutations in tumor suppressor genes (TSGs) that are involved in regulating the cell cycle, apoptosis, or cell differentiation, or maintenance of genomic integrity. Tumor suppressor mouse models are the most frequently used animal models in cancer research. The anti-tumorigenic functions of TSGs, and their role in development and differentiation, and inhibition of oncogenes are discussed. In this review, we summarize some of the important transgenic and knockout mouse models for TSGs, including Rb, p53, Ink4a/Arf, Brca1/2, and their related genes

    Interaction Between Convection and Pulsation

    Get PDF
    This article reviews our current understanding of modelling convection dynamics in stars. Several semi-analytical time-dependent convection models have been proposed for pulsating one-dimensional stellar structures with different formulations for how the convective turbulent velocity field couples with the global stellar oscillations. In this review we put emphasis on two, widely used, time-dependent convection formulations for estimating pulsation properties in one-dimensional stellar models. Applications to pulsating stars are presented with results for oscillation properties, such as the effects of convection dynamics on the oscillation frequencies, or the stability of pulsation modes, in classical pulsators and in stars supporting solar-type oscillations.Comment: Invited review article for Living Reviews in Solar Physics. 88 pages, 14 figure

    Expression of arf tumor suppressor in spermatogonia facilitates meiotic progression in male germ cells

    Get PDF
    The mammalian Cdkn2a (Ink4a-Arf) locus encodes two tumor suppressor proteins (p16Ink4a and p19Arf) that respectively enforce the anti-proliferative functions of the retinoblastoma protein (Rb) and the p53 transcription factor in response to oncogenic stress. Although p19Arf is not normally detected in tissues of young adult mice, a notable exception occurs in the male germ line, where Arf is expressed in spermatogonia, but not in meiotic spermatocytes arising from them. Unlike other contexts in which the induction of Arf potently inhibits cell proliferation, expression of p19Arf in spermatogonia does not interfere with mitotic cell division. Instead, inactivation of Arf triggers germ cell-autonomous, p53-dependent apoptosis of primary spermatocytes in late meiotic prophase, resulting in reduced sperm production. Arf deficiency also causes premature, elevated, and persistent accumulation of the phosphorylated histone variant H2AX, reduces numbers of chromosome-associated complexes of Rad51 and Dmc1 recombinases during meiotic prophase, and yields incompletely synapsed autosomes during pachynema. Inactivation of Ink4a increases the fraction of spermatogonia in S-phase and restores sperm numbers in Ink4a-Arf doubly deficient mice but does not abrogate γ-H2AX accumulation in spermatocytes or p53-dependent apoptosis resulting from Arf inactivation. Thus, as opposed to its canonical role as a tumor suppressor in inducing p53-dependent senescence or apoptosis, Arf expression in spermatogonia instead initiates a salutary feed-forward program that prevents p53-dependent apoptosis, contributing to the survival of meiotic male germ cells

    Loss of p19Arf Facilitates the Angiogenic Switch and Tumor Initiation in a Multi-Stage Cancer Model via p53-Dependent and Independent Mechanisms

    Get PDF
    The Arf tumor suppressor acts as a sensor of oncogenic signals, countering aberrant proliferation in large part via activation of the p53 transcriptional program, though a number of p53-independent functions have been described. Mounting evidence suggests that, in addition to promoting tumorigenesis via disruptions in the homeostatic balance between cell proliferation and apoptosis of overt cancer cells, genetic alterations leading to tumor suppressor loss of function or oncogene gain of function can also incite tumor development via effects on the tumor microenvironment. In a transgenic mouse model of multi-stage pancreatic neuroendocrine carcinogenesis (PNET) driven by inhibition of the canonical p53 and Rb tumor suppressors with SV40 large T-antigen (Tag), stochastic progression to tumors is limited in part by a requirement for initiation of an angiogenic switch. Despite inhibition of p53 by Tag in this mouse PNET model, concomitant disruption of Arf via genetic knockout resulted in a significantly accelerated pathway to tumor formation that was surprisingly not driven by alterations in tumor cell proliferation or apoptosis, but rather via earlier activation of the angiogenic switch. In the setting of a constitutional p53 gene knockout, loss of Arf also accelerated tumor development, albeit to a lesser degree. These findings demonstrate that Arf loss of function can promote tumorigenesis via facilitating angiogenesis, at least in part, through p53-independent mechanisms
    corecore