40 research outputs found

    Smectic Liquid Crystals: Materials with One-Dimensional, Periodic Order

    Full text link
    Smectic liquid crystals are materials formed by stacking deformable, fluid layers. Though smectics prefer to have flat, uniformly-spaced layers, boundary conditions can impose curvature on the layers. Since the layer spacing and curvature are intertwined, the problem of finding minimal configurations for the layers becomes highly nontrivial. We discuss various topological and geometrical aspects of these materials and present recent progress on finding some exact layer configurations. We also exhibit connections to the study of certain embedded minimal surfaces and briefly summarize some important open problems.Comment: 16 page

    Smectic blue phases: layered systems with high intrinsic curvature

    Full text link
    We report on a construction for smectic blue phases, which have quasi-long range smectic translational order as well as three dimensional crystalline order. Our proposed structures fill space by adding layers on top of a minimal surface, introducing either curvature or edge defects as necessary. We find that for the right range of material parameters, the favorable saddle-splay energy of these structures can stabilize them against uniform layered structures. We also consider the nature of curvature frustration between mean curvature and saddle-splay.Comment: 15 pages, 11 figure

    Weirdest Martensite: Smectic Liquid Crystal Microstructure And Weyl-poincaré Invariance

    Get PDF
    Smectic liquid crystals are remarkable, beautiful examples of materials microstructure, with ordered patterns of geometrically perfect ellipses and hyperbolas. The solution of the complex problem of filling three-dimensional space with domains of focal conics under constraining boundary conditions yields a set of strict rules, which are similar to the compatibility conditions in a martensitic crystal. Here we present the rules giving compatible conditions for the concentric circle domains found at two-dimensional smectic interfaces with planar boundary conditions. Using configurations generated by numerical simulations, we develop a clustering algorithm to decompose the planar boundaries into domains. The interfaces between different domains agree well with the smectic compatibility conditions. We also discuss generalizations of our approach to describe the full three-dimensional smectic domains, where the variant symmetry group is the Weyl-Poincaré group of Lorentz boosts, translations, rotations, and dilatations. © 2016 American Physical Society.1161

    Rotational Invariance and the Theory of Directed Polymer Nematics

    Full text link
    The consequences of rotational invariance in a recent theory of fluctuations in dilute polymer nematics are explored. A correct rotationally invariant free energy insures that anomalous couplings are not generated in a one-loop renormalization group calculation.Comment: 4 Pages, latex file (requires REVTEX 3.0), two postscript figures (attached), IASSNS-HEP-93/2

    The electroclinic effect and modulated phases in smectic liquid crystals

    Full text link
    We explore the possibility that the large electroclinic effect observed in ferroelectric liquid crystals arises from the presence of an ordered array of disclination lines and walls. If the spacing of these defects is in the subvisible range, this modulated phase would be similar macroscopically to a smectic A phase. The application of an electric field distorts the array, producing a large polarization, and hence a large electroclinic effect. We show that with suitable elastic parameters and sufficiently large chirality, the modulated phase is favored over the smectic A and helically twisted smectic C* phases. We propose various experimental tests of this scenario.Comment: 9 pages, 7 figures; new version includes dipolar interactions and bend-twist couplin

    Random close packing of granular matter

    Full text link
    We propose an interpretation of the random close packing of granular materials as a phase transition, and discuss the possibility of experimental verification.Comment: 6 page

    Bulk Universality and Related Properties of Hermitian Matrix Models

    Full text link
    We give a new proof of universality properties in the bulk of spectrum of the hermitian matrix models, assuming that the potential that determines the model is globally C2C^{2} and locally C3C^{3} function (see Theorem \ref{t:U.t1}). The proof as our previous proof in \cite{Pa-Sh:97} is based on the orthogonal polynomial techniques but does not use asymptotics of orthogonal polynomials. Rather, we obtain the sinsin-kernel as a unique solution of a certain non-linear integro-differential equation that follows from the determinant formulas for the correlation functions of the model. We also give a simplified and strengthened version of paper \cite{BPS:95} on the existence and properties of the limiting Normalized Counting Measure of eigenvalues. We use these results in the proof of universality and we believe that they are of independent interest

    Fluctuating Filaments I: Statistical Mechanics of Helices

    Full text link
    We examine the effects of thermal fluctuations on thin elastic filaments with non-circular cross-section and arbitrary spontaneous curvature and torsion. Analytical expressions for orientational correlation functions and for the persistence length of helices are derived, and it is found that this length varies non-monotonically with the strength of thermal fluctuations. In the weak fluctuation regime, the local helical structure is preserved and the statistical properties are dominated by long wavelength bending and torsion modes. As the amplitude of fluctuations is increased, the helix ``melts'' and all memory of intrinsic helical structure is lost. Spontaneous twist of the cross--section leads to resonant dependence of the persistence length on the twist rate.Comment: 5 figure

    Level-Spacing Distributions and the Bessel Kernel

    Get PDF
    The level spacing distributions which arise when one rescales the Laguerre or Jacobi ensembles of hermitian matrices is studied. These distributions are expressible in terms of a Fredholm determinant of an integral operator whose kernel is expressible in terms of Bessel functions of order α\alpha. We derive a system of partial differential equations associated with the logarithmic derivative of this Fredholm determinant when the underlying domain is a union of intervals. In the case of a single interval this Fredholm determinant is a Painleve tau function.Comment: 18 pages, resubmitted to make postscript compatible, no changes to manuscript conten

    Statistical mechanics of triangulated ribbons

    Full text link
    We use computer simulations and scaling arguments to investigate statistical and structural properties of a semiflexible ribbon composed of isosceles triangles. We study two different models, one where the bending energy is calculated from the angles between the normal vectors of adjacent triangles, the second where the edges are viewed as semiflexible polymers so that the bending energy is related to the angles between the tangent vectors of next-nearest neighbor triangles. The first model can be solved exactly whereas the second is more involved. It was recently introduced by Liverpool and Golestanian Phys.Rev.Lett. 80, 405 (1998), Phys.Rev.E 62, 5488 (2000) as a model for double-stranded biopolymers such as DNA. Comparing observables such as the autocorrelation functions of the tangent vectors and the bond-director field, the probability distribution functions of the end-to-end distance, and the mean squared twist we confirm the existence of local twist correlation, but find no indications for other predicted features such as twist-stretch coupling, kinks, or oscillations in the autocorrelation function of the bond-director field.Comment: 10 pages, 13 figures. submitted to PRE, revised versio
    corecore