592 research outputs found

    Nonlinear Effects in the TGB_A Phase

    Full text link
    We study the nonlinear interactions in the TGB_A phase by using a rotationally invariant elastic free energy. By deforming a single grain boundary so that the smectic layers undergo their rotation within a finite interval, we construct a consistent three-dimensional structure. With this structure we study the energetics and predict the ratio between the intragrain and intergrain defect spacing, and compare our results with those from linear elasticity and experiment.Comment: 4 pages, RevTeX, 2 included eps figure

    Optimal antiviral treatment strategies and the effects of resistance

    Get PDF
    Recent pandemic planning has highlighted the importance of understanding the effect that widespread antiviral use will have on the emergence and spread of resistance. A number of recent studies have determined that if resistance to antiviral medication can evolve, then deploying treatment at a less than maximum rate often minimizes the outbreak size. This finding, however, involves the assumption that treatment levels remain constant during the entire outbreak. Using optimal control theory, we address the question of optimal antiviral use by considering a large class of time-varying treatment strategies. We prove that, contrary to previous results, it is always optimal to treat at the maximum rate provided that this treatment occurs at the right time. In general the optimal strategy is to wait some fixed amount of time and then to deploy treatment at the maximum rate for the remainder of the outbreak. We derive analytical conditions that characterize this optimal amount of delay. Our results show that it is optimal to start treatment immediately when one of the following conditions holds: (i) immediate treatment can prevent an outbreak, (ii) the initial pool of susceptibles is small, or (iii) when the maximum possible rate of treatment is low, such that there is little de novo emergence of resistant strains. Finally, we use numerical simulations to verify that the results also hold under more general conditions

    Boundary Effects in Chiral Polymer Hexatics

    Full text link
    Boundary effects in liquid-crystalline phases can be large due to long-ranged orientational correlations. We show that the chiral hexatic phase can be locked into an apparent three-dimensional N+6 phase via such effects. Simple numerical estimates suggest that the recently discovered "polymer hexatic" may actually be this locked phase.Comment: 4 pages, RevTex, 3 included eps figure

    Topological defects and shape of aromatic self-assembled vesicles

    Get PDF
    We show that the stacking of flat aromatic molecules on a curved surface results in topological defects. We consider, as an example, spherical vesicles, self-assembled from molecules with 5- and 6-thiophene cores. We predict that the symmetry of the molecules influences the number of topological defects and the resulting equilibrium shape.Comment: accepted as a Letter in the J. Phys. Chem.

    A generalized Tullock contest

    Get PDF
    We construct a generalized Tullock contest under complete information where contingent upon winning or losing, the payoff of a player is a linear function of prizes, own effort, and the effort of the rival. This structure nests a number of existing contests in the literature and can be used to analyze new types of contests. We characterize the unique symmetric equilibrium and show that small parameter modifications may lead to substantially different types of contests and hence different equilibrium effort levels

    Order and Frustration in Chiral Liquid Crystals

    Full text link
    This paper reviews the complex ordered structures induced by chirality in liquid crystals. In general, chirality favors a twist in the orientation of liquid-crystal molecules. In some cases, as in the cholesteric phase, this favored twist can be achieved without any defects. More often, the favored twist competes with applied electric or magnetic fields or with geometric constraints, leading to frustration. In response to this frustration, the system develops ordered structures with periodic arrays of defects. The simplest example of such a structure is the lattice of domains and domain walls in a cholesteric phase under a magnetic field. More complex examples include defect structures formed in two-dimensional films of chiral liquid crystals. The same considerations of chirality and defects apply to three-dimensional structures, such as the twist-grain-boundary and moire phases.Comment: 39 pages, RevTeX, 14 included eps figure

    Structures and orientational transitions in thin films of tilted hexatic smectics

    Full text link
    We present detailed systematic studies of structural transformations in thin liquid crystal films with the smectic-C to hexatic phase transition. For the first time all possible structures reported in the literature are observed for one material (5 O.6) at the variation of temperature and thickness. In unusual modulated structures the equilibrium period of stripes is twice with respect to the domain size. We interpret these patterns in the frame work of phenomenological Landau type theory, as equilibrium phenomena produced by a natural geometric frustration in a system having spontaneous splay distortion.Comment: 7 pages, 6 figure
    corecore