212 research outputs found

    Excitations of the unstable nuclei ^{48}Ni and ^{49}Ni

    Get PDF
    The isoscalar E1 and E2 resonances in the proton-rich nuclei ^{48,49}Ni and the {f_{7/2}3^-} multiplet in ^{49}Ni have been calculated taking into account the single-particle continuum exactly. The analogous calculations for the mirror nuclei ^{48}Ca and ^{49}Sc are presented. The models used are the continuum RPA for ^{48}Ni, ^{48}Ca and the Odd RPA for ^{49}Ni, ^{49}Sc, the latter has been developed recently and describes both single-particle and collective excitations of an odd nucleus on a common basis. In all four nuclei we obtained a distinct splitting of the isoscalar E1 resonance into 1 h-bar omega and 3 h-bar omega peaks at about 11 MeV and 30 MeV, respectively. The main part of the isoscalar E1 EWSR is exhausted by the 3 h-bar omega resonances. The 1 h-bar omega resonances exhaust about 35% of this EWSR in ^{48,49}Ni and about 22% in ^{48}Ca and ^{49}Sc. All seven {f_{7/2}3^-} multiplet members in ^{49}Ni are calculated to be in the (6-8) MeV energy region and have noticeable escape widths.Comment: 11 pages, 3 Postscript figure

    On Cooper Pairing in Finite Fermi Systems

    Get PDF
    In order to analyse the role of the quasiparticle-phonon interaction in the origin of nuclear gap, we applied an approach which is similar to the Eliashberg theory for usual superconductors. We obtained that the averaged contribution of the quasiparticle-phonon mechanism to the observed value of the pairing gap for 120^{120}Sn is 26% and the BCS-type mechanism gives 74% . Thus, pairing is of a mixed nature at least in semi-magic nuclei -- it is due to the quasiparticle-phonon and BCS mechanisms, the first one being mainly a surface mechanism and the second one mainly a volume mechanism. The calculations of the strength distribution for the odd-mass nuclei 119Sn^{119}Sn and 121Sn^{121}Sn have shown that the quasiparticle-phonon mechanism mainly improves the description of the observed spectroscopic factors in these nuclei. For the case of nuclei with pairing in both proton and neutron systems it is necessary to go beyond the Eliashberg-Migdal approximations and include the vertex correction graphs in addition to the rainbow ones. The estimations for spectroscopic factors performed within a three-level model have shown that the contribution of the vertex correction graphs was rather noticeable.Comment: The 7-th International Spring Seminar on Nuclear Physics, "Challenges of Nuclear Structure",Maiori, May 27-31, 200

    Self-consistent calculations of the strength function and radiative neutron capture cross section for stable and unstable tin isotopes

    Get PDF
    The E1 strength function for 15 stable and unstable Sn even-even isotopes from A=100 till A=176 are calculated using the self-consistent microscopic theory which, in addition to the standard (Q)RPA approach, takes into account the single-particle continuum and the phonon coupling. Our analysis shows two distinct regions for which the integral characteristics of both the giant and pygmy resonances behave rather differently. For neutron-rich nuclei, starting from 132^{132}Sn, we obtain a giant E1 resonance which significantly deviates from the widely-used systematics extrapolated from experimental data in the β\beta-stability valley. We show that the inclusion of the phonon coupling is necessary for a proper description of the low-energy pygmy resonances and the corresponding transition densities for A132A132 region the influence of phonon coupling is significantly smaller. The radiative neutron capture cross sections leading to the stable 124^{124}Sn and unstable 132^{132}Sn and 150^{150}Sn nuclei are calculated with both the (Q)RPA and the beyond-(Q)RPA strength functions and shown to be sensitive to both the predicted low-lying strength and the phonon coupling contribution. The comparison with the widely-used phenomenological Generalized Lorentzian approach shows considerable differences both for the strength function and the radiative neutron capture cross section. In particular, for the neutron-rich 150^{150}Sn, the reaction cross section is found to be increased by a factor greater than 20. We conclude that the present approach may provide a complete and coherent description of the γ\gamma-ray strength function for astrophysics applications. In particular, such calculations are highly recommended for a reliable estimate of the electromagnetic properties of exotic nuclei

    Magnetic moments of odd-odd spherical nuclei

    Full text link
    Magnetic moments of more than one hundred odd-odd spherical nuclei in ground and excited states are calculated within the self-consistent TFFS based on the EDF method by Fayans {\it et al}. We limit ourselves to nuclei with a neutron and a proton particle (hole) added to the magic or semimagic core. A simple model of no interaction between the odd nucleons is used. In most the cases we analyzed, a good agreement with the experimental data is obtained. Several cases are considered where this simple model does not work and it is necessary to go beyond. The unknown values of magnetic moments of many unstable odd and odd-odd nuclei are predicted including sixty values for excited odd-odd nuclei.Comment: 10 page

    Self-consistent account for phonon induced corrections to quadrupole moments of odd nuclei. Pole and non-pole diagrams

    Full text link
    Recent results of the description of quadrupole moments of odd semi-magic nuclei are briefly reviewed. They are based on the self-consistent theory of finite Fermi systems with account for the phonon-particle coupling (PC) effects. The self-consistent model for describing the PC effects was developed previously for magnetic moments. Account for the non-pole diagrams is an important ingredient of this model. In addition to previously reported results for the odd In and Sb isotopes, which are the proton-odd neighbors of even tin nuclei, we present new results for odd Bi isotopes, the odd neighbors of even lead isotopes. In general, account for the PC corrections makes the agreement with the experimental data significantly better.Comment: 8 pages, 4 figures. Presented at ICNFP1

    On the mechanisms of superfluidity in atomic nuclei

    Full text link
    A system of equations is obtained for the Cooper gap in nuclei. The system takes two mechanisms of superfluidity into account in an approximation quadratic in the phonon- production amplitude : a Bardeen- Cooper- Schrieffer (BCS) type mechanism and a quasiparticle- phonon mechanism. These equations are solved for 120 Sn in a realistic approximation. If the simple procedures proposed are used to determine the new particle- particle interaction and to estimate the average effect, then the contribution of the quasiparticle- phonon mechanism to the observed width of the pairing gap is 26% and the BCS-type contribution is 74%. This means that at least in semimagic nuclei pairing is of a mixed nature - it is due to the two indicated mechanisms, the first being mainly a surface mechanism and the second mainly a volume mechanism.Comment: 6 page

    Phonon coupling effects in magnetic moments of magic and semi-magic nuclei

    Full text link
    Phonon coupling (PC) corrections to magnetic moments of odd neighbors of magic and semi-magic nuclei are analyzed within the self-consistent Theory of Finite Fermi Systems (TFFS) based on the Energy Density Functional by Fayans et al. The perturbation theory in g_L^2 is used where g_L is the phonon-particle coupling vertex. A model is developed with separating non-regular PC contributions, the rest is supposed to be regular and included into the standard TFFS parameters. An ansatz is proposed to take into account the so-called tadpole term which ensures the total angular momentum conservation with g_L^2 accuracy. An approximate method is suggested to take into account higher order terms in g_L^2. Calculations are carried out for four odd-proton chains, the odd Tl, Bi, In and Sb ones. Different PC corrections strongly cancel each other. In the result, the total PC correction to the magnetic moment in magic nuclei is, as a rule, negligible. In non-magic nuclei considered it is noticeable and, with only one exception, negative. On average it is of the order of -(0.1 - 0.5) \mu_N and improves the agreement of the theory with the data. Simultaneously we calculated the gyromagnetic ratio g_L^{ph} of all low-lying phonons in 208Pb. For the 3^-_1 state it is rather close to the Bohr-Mottelson model prediction whereas for other L-phonons, two 5^- and six positive parity states, the difference from the Bohr-Mottelson values is significant.Comment: 21 pages, 24 figure

    Self-consistent calculations within the Green's function method including particle-phonon coupling and the single-particle continuum

    Get PDF
    The Green's function method in the \emph{Quasiparticle Time Blocking Approximation} is applied to nuclear excitations in 132^{132}Sn and 208^{208}Pb. The calculations are performed self-consistently using a Skyrme interaction. The method combines the conventional RPA with an exact single-particle continuum treatment and considers in a consistent way the particle-phonon coupling. We reproduce not only the experimental values of low- and high-lying collective states but we also obtain fair agreement with the data of non-collective low-lying states that are strongly influenced by the particle-phonon coupling.Comment: 6 pages, 9 figures, documentclass{svjour

    Microscopic description of the pygmy and giant electric dipole resonances in stable Ca isotopes

    Full text link
    The properties of the pygmy (PDR) and giant dipole resonance (GDR)in the stable 40Ca^{40}Ca,44Ca^{44}Ca and 48Ca^{48}Ca isotopes have been calculated within the \emph{Extended Theory of Finite Fermi Systems}(ETFFS). This approach is based on the random phase approximation (RPA) and includes the single particle continuum as well as the coupling to low-lying collectives states which are considered in a consistent microscopic way. For 44Ca^{44}Ca we also include pairing correlations. We obtain good agreement with the experimental data for the gross properties of both resonances. It is demonstrated that the recently measured A-dependence of the strength of the PDR below 10 MeV is well understood in our model:due to the phonon coupling some of the strength in 48Ca^{48}Ca is simply shifted beyond 10 MeV. The predicted fragmentation of the PDR can be investigated in (e,e)(e,e') and (γ,γ)(\gamma ,\gamma') experiments. Whereas the isovector dipole strength of the PDR is small in all Ca isotopes, we find in this region surprisingly strong isoscalar dipole states, in agreement with an (α,αγ)(\alpha,\alpha'\gamma) experiment. We conclude that for the detailed understanding of the structure of excited nuclei e.g. the PDR and GDR an approach like the present one is absolutely necessary.Comment: 6 figure
    corecore