
ar
X

iv
:1

10
8.

17
17

v1
  [

nu
cl

-t
h]

  8
 A

ug
 2

01
1

Self-consistent calculations of the strength function and radiative neutron capture

cross section for stable and unstable tin isotopes

A. Avdeenkov
National Institute for Theoretical Physics, Stellenbosch Institute of Advanced Study, South Africa;

Institute of Nuclear Physics, Moscow State University, Vorob’evy Gory, Moscow, Russia

S. Goriely
Institut d’Astronomie et d’Astrophysique, ULB, CP 226, B-1050 Brussels, Belgium

S. Kamerdzhiev
Institute of Physics and Power Engineering, 249033 Obninsk, Russia;

Institut fuer Kernphysik, Forshungszentrum Juelich, D-52425 Juelich, Germany

S. Krewald
Institut fuer Kernphysik, Forshungszentrum Juelich, D-52425 Juelich, Germany

The E1 strength function for 15 stable and unstable Sn even-even isotopes from A = 100 till
A = 176 are calculated using the self-consistent microscopic theory which, in addition to the standard
(Q)RPA approach, takes into account the single-particle continuum and the phonon coupling. Our
analysis shows two distinct regions for which the integral characteristics of both the giant and
pygmy resonances behave rather differently. For neutron-rich nuclei, starting from 132Sn, we obtain
a giant E1 resonance which significantly deviates from the widely-used systematics extrapolated from
experimental data in the valley of β-stability. We show that the inclusion of the phonon coupling
is necessary for a proper description of the low-energy pygmy resonances and the corresponding
transition densities for A<132 nuclei, while in the A > 132 region the influence of the phonon
coupling is significantly smaller. The radiative neutron capture cross sections leading to the stable
124Sn and unstable 132Sn, 150Sn nuclei are calculated with both the (Q)RPA and the beyond-(Q)RPA
strength functions and shown to be sensitive to both the predicted low-lying strength and the
phonon coupling contribution. The comparison with the widely-used phenomenological Generalized
Lorentzian approach shows considerable differences both for the strength function and the radiative
neutron capture cross section. In particular, for the neutron-rich 150Sn, the reaction cross section is
found to be increased by a factor larger than 20. We conclude that the present approach may provide
a complete and coherent description of the γ-ray strength function for astrophysics applications. In
particular, such calculations are highly recommended for a reliable estimate of the electromagnetic
properties of exotic nuclei.

PACS numbers: 24.10.-i, 24.60.Dr, 24.30.Cz, 21.60.Jz

I. INTRODUCTION

One of the paramount and challenging goals of mod-
ern nuclear physics is to elaborate theoretical approaches
with not only descriptive but also predictive abilities.
This is of particular relevance for a proper description
of nuclei far from the valley of stability since in this
case only limited or no information is available. Self-
consistency between the mean field and the effective in-
teraction is also known to be of prime importance for a
correct exploration of the excitation properties of unsta-
ble nuclei. Another fundamental ingredient of the model,
known to be important even for stable nuclei, concerns
the inclusion of more complex configurations than those
traditionally included in the Random Phase Approxima-
tion (RPA) or Quasi-particle RPA (QRPA). Here the
most realistic approaches include complex configurations
with phonons, i.e. the coupling of single-particle de-
grees of freedom with the phonon degrees (the so-called
phonon coupling or PC). These approaches are referred

in the litterature as the Quasi-particle-PhononModel [1],
the (Q)RPA+Phonon Coupling Model ((Q)RPA+PC)
[2] and the Extended Theory of Finite Fermi Systems
(ETFFS) [3]. The latter is based on the Green function
method and includes the single-particle continuum which
is necessary for nuclei with a nucleon separation energy
close to zero. It has been recently generalized to include
pairing using the quasi-particle time blocking approxima-
tion (QTBA) [4].

These approaches have been supplemented by consid-
ering a self-consistent mean field, see for example [5], or
the self-consistency between the mean field and the ef-
fective interaction [6–8]. The latter made it possible to
perform the calculation with one unique set of interaction
parameters, for example the Skyrme force [6, 8], instead
of two sets of parameters used in non-self-consistent ap-
proaches (one for the effective interaction and another for
the mean field). These improvements - taking into ac-
count the single-particle continuum and self-consistency-
are of great interest, first of all, for astrophysics applica-
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tions, but also for nuclear data evaluation. The added-
value of such approaches lies essentially in their larger
predictive power which provides an increased confidence
in the calculation of structure properties for exotic nu-
clei, especially those with a large neutron excess and /or
a small nucleon separation energy. However, one should
note that all the approaches developed so far are in fact
not fully self-consistent because, as it was noted earlier in
[9, 10], they use the self- consistency only at the (Q)RPA
level and do not include more complex configurations
into the self-consistency conditions. This is one of the
main reasons to use some additional procedures to ex-
clude ghost states, in particular, the spurious isoscalar
1− state. This is achieved through a specific fit of the
force parameters [5, 6, 8], the use of the so-called sub-
traction procedure in the QTBA model [4] or of the so-
called “forced consistency” method [11, 12]. Neverthe-
less, accounting for the PC and self-consistency, beyond
any doubt, increases the quality of the microscopic nu-
clear theory and is absolutely necessary to describe si-
multaneously the structure of ground and excited states
for unstable nuclei.

The role played by the PC in the description of the gi-
ant resonances in stable nuclei is well-known. In partic-
ular, the PC explains approximately 50% of the observed
width, its gross structure and sometimes some fine struc-
ture (e.g. for the E2 isoscalar resonance in 208Pb [3]).
However, the direct influence of the PC on the giant
resonance of unstable nuclei has been much less stud-
ied though it is expected to be as important as it is for
stable nuclei. So far, giant resonance characteristics for
unstable nuclei have been studied systematically within
the (Q)RPA only (for example, see [13–16]) and, quite
recently, within a general approach based on sum rules
[17]. Note that for the reasons given below, we will dis-
cuss in the present paper only the case of electric dipole
resonance.

The impact of the PC on the so-called pygmy dipole
resonance (PDR), which lies in the low-energy tail of the
E1 giant dipole resonance (GDR) and exhausts about
1−2% of the energy-weighted sum rule (EWSR) [15, 18–
20], is of particular interest. First, there is no consen-
sus at present in our understanding of some important
questions related to the PDR (see [13] and a recent mini-
review [21]). Second, this resonance is known to have a
significant impact on the radiative neutron capture rate
of astrophysical interest [15, 16, 22]. The importance of
the PDR is confirmed by the simple fact that it has been
taken into account in all modern nuclear data libraries
(though at a phenomenological level) in addition to the
usual GDR [20, 23]. The question arises for exotic nuclei
where the phenomenological approach may fail to provide
a reliable prediction because of the specific features of the
PDR in such nuclei and the scarce experimental data on
which systematics is based. For this reason, a similar
approach should be followed as for the giant resonance
problem for unstable nuclei, i.e., as discussed above, to
use a reliable self-consistent theory which accounts for

PC and the single-particle continuum in addition to the
standard (Q)RPA.

For all these reasons, the PDR problem has re-
cently become a subject of intensive experimental (see
Refs. [18, 19, 25] and references therein) and theoretical
(see Refs. [5–7, 21, 24, 26, 27] and references therein)
studies. Even if the total E1 strength of the PDR is
small, if located well below the neutron separation en-
ergy, it can significantly increase the radiative neutron
capture cross section, especially, for neutron-rich nuclei
[15, 16, 22]. Different measurements suggest that some
enhancement of the E1-strength could be located at low
energies even on stable nuclei, a feature that cannot be
described within the (Q)RPA calculations. In partic-
ular, the large-scale QRPA calculations of [15] predict
PDRs which are on average 1 to 2 MeV higher in energy
than the observed values. Many recent calculations of
the PDR [6, 7, 21, 26, 28, 29] as well as the older ones
[30, 31] performed within the non-self-consistent Quasi-
particle-Phonon Model confirm the need to take into ac-
count more complex configurations than those included
in the (Q)RPA approach, most of all the 1p1h ⊗ phonon
or 2 quasi-particles ⊗ phonon configurations. However,
large uncertainties in the description of the PDR (in par-
ticular, its energy and strength) remain, especially for
unstable nuclei, and only sound microscopic models can
shed light on its existence, as well as its relative impor-
tance and impact on neutron capture. For example, the
self-consistent calculations with PC [26, 32] have shown
that the complex configurations give a significant contri-
bution to the radiative neutron capture cross section for
the unstable 132Sn.

In practice, for a proper description of the PDR, at
least two natural physical conditions need to be fulfilled:
first, the energy of the 1− spurious state must be equal
to zero; second, the theory must describe correctly the
mean energy E0 of the E1 giant resonance. Only in this
case one may expect the theory to provide a reasonable
quantitative prediction of the PDR integral features. In
order to satisfy these two conditions different additional
procedures have been used. The simplest way is to ad-
just the isovector and isoscalar effective force parame-
ters to obtain the correct values of E0 and the spurious
1− level energy [5]. This is suitable for stable nuclei for
which E0 is experimentally available. For unstable nu-
clei, if use is made of a Skyrme force and a self-consistent
scheme without the subtraction procedure [4], it is neces-
sary to modify some of the Skyrme parameters to obtain
an agreement with experiment [8]. The first attempt to
take the single-particle continuum into account exactly
at the RPA+PC level using the Green function method
was made in Ref. [33] for magic nuclei. It was shown that
a renormalization of the SLy4 force was necessary to ob-
tain an agreement with experiment. It is worth noting
that this conclusion is in accordance with the studies of
[34, 35] who considered this idea from a different point
of view.

In our previous works [8, 21, 26] we realized a self-
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consistent version of the ETFFS(QTBA) using a dis-
cretized single-particle continuum with different kinds of
Skyrme forces including the SLy4 one, where the velocity
force is considered in a local approximation (sometimes
we call it DTBA). The latter had consequences for the
renormalization of the interaction in order to locate the
spurious state at zero energy. On the one hand, it is of
great interest to obtain a general information about the
E1 strength function and correspondingly about the ra-
diative neutron capture cross section for many neutron-
rich nuclei using the well-known SLy4 forces. On the
other hand, it is clear that the inclusion of the single-
particle continuum along with the PC effects for non-
magic nuclei is still a difficult problem. For these rea-
sons, we use here our DTBA approach to calculate the
E1 strength function for the long Sn isotopic chain.
The aim of the present work is twofold. First, we calcu-

late the PDR and GDR in the long chain of the stable and
unstable tin isotopes using the variant of the microscopic
self-consistent version of the ETFFS(QTBA) which, in
addition to the (Q)RPA approach, takes into account the
single-particle continuum (by means of a discretization
procedure) and phonon coupling in nuclei with pairing.
For this part we concentrate on the description of the
integral characteristics in order to gain an insight view
into different trends for stable and unstable nuclei and to
compare our results with the widely-used empirical for-
mula. Second, in order to investigate the impact of the
PC on the radiative neutron capture cross section in sta-
ble and unstable nuclei we calculate them both with and
without PC, within the same scheme of calculation based
on the SLy4 Skyrme force or a slightly modified version
of it. Here our main attention is paid to the PDR and
its impact on the radiative neutron capture.

II. SELF-CONSISTENT CALCULATION OF

THE PDR AND GDR

A. Method

To date there are tens of different Skyrme parametriza-
tions serving slightly different aims and fitting some bulk
properties of the ground state. Here we use the SLy4
parametrization of the Skyrme force [36] which proves
to be rather successful in describing bulk properties of
the ground state and some excited states within the
(Q)RPA [37].
The ground states are calculated within the HFB ap-

proach using the spherical code HFBRAD [38]. The
residual interaction for the (Q)RPA and QTBA calcu-
lations is derived as the second derivative of the Skyrme
functional [37]. In our calculation, several simplifications
are performed. Namely, since up to now the QTBA ap-
proach is designed to use the BCS-based quasi-particle
basis, we use the HFB approach to extract the quasi-
particle characteristics and corresponding wave func-
tions, i.e. the occupation numbers are treated as in

the BCS approximation. The spin-orbit residual inter-
action is dropped. The velocity-dependent terms of the
Skyrme force are approximated by their Landau-Migdal
limit [39, 40] though some physically sounder modifi-
cations are included. There are two kinds of velocity-
dependent terms: the first one is ∝ k

2δ(r − r
′) and the

second one to k
†δ(r − r

′)k (P-wave interaction in the
momentum space). The averaged value over the density
of the first term gives k2F /2δ(r − r′) while that of the
second one is zero. Such an approximation violates the
self-consistency and one has to correct the parameters
of the residual interaction to put the spurious center-of-
mass state to zero. We only change here the term which is
proportional to t1k

2

F
δ(r−r

′) by a given factor as we take
this term approximately. This factor is usually around
1.0− 1.25 for the Sn chain.

In general, the ETFFS(QTBA) accounts for the single-
particle continuum completely at the RPA level for magic
nuclei and includes the new effect of ground state correla-
tions caused by the PC [3]. However, because of the tech-
nical difficulties connected with the pairing specificity,
these effects are not considered in the present calcula-
tions. The quasi-particle energy cutoff of 100 MeV is
used. We checked that within this approach the EWSR
is fully exhausted (for the case without the velocity-
dependent terms) and that the use of a larger basis did
not bring any noticeable differences. The QTBA cal-
culations are performed with the same basis. We use
14-16 low-lying phonons of L = 2 − 6 multipolarity and
normal parity. They are obtained within the (Q)RPA
with the calculated effective interaction using the same
quasi-particle-energy cutoff. Such a consistent method
to calculate phonons is the reason for us to use a larger
number of phonons than in the phenomenological ETFFS
[3]. In Fig. 2 we test our numerical approximation of the
single-particle continuum discretization for the 132Sn and
176Sn magic nuclei, by comparing our RPA results with
the exact account for the continuum by the Green func-
tion method at the RPA level [41, 42], as described in
Ref. [33]. It turns out that both calculations are almost
identical which confirms that the discretization proce-
dure adopted here is quite satisfactory.

Usually the GDR strength function is obtained from
the experimental photoabsorption cross section which is
fitted by a simple Lorentzian functional. The E1 pho-
toabsorption cross section is related to the strength func-
tion S(ω) as follows σE1(ω) = 4.022 ω SE1(ω), where the
photon energy ω is taken in MeV, S in fm2 MeV−1 and σ
in mb. The Lorentzian fit can be used to estimate the in-
tegral characteristics of the giant resonance [43, 44]. The
mean energy E0, the resonance width Γ and the maxi-
mum value of the cross section σ0 are extracted from the
calculated photoabsorption cross sections under the con-
dition that the three lowest energy-weighted moments of
the Lorentzian and of the theoretical curve should coin-
cide in the considered energy interval. However, in or-
der to obtain a more complete and universal information
about the integral characteristics it is often better to use
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FIG. 1: (Color online) 1− strength functions within
QRPA (dashed curves) and QTBA (solid curves) for
100Sn,110Sn,112Sn,116Sn, 120Sn,124Sn isotopes.

energy moments (see below). This seems to be more ap-
propriate for very neutron-rich nuclei where one may ex-
pect significant deviations from a Lorentzian-like shape
for the cross section. The same (0-30) MeV summation
interval is used for all considered nuclei.
The other feature of our calculation scheme is the so-

called subtraction procedure [4, 7] which should avoid a
PC double counting from the effective interaction. This
procedure is a direct continuation of the phenomenologi-
cal refinement philosophy used in the first formulations of
the ETFFS [3, 45]. Because the self-consistent relativis-
tic (Q)RPA calculations are well fitted to experimental
data and because the subtraction procedure, in princi-
ple, provides the correct E0 value, which is equal to the
(Q)RPA E0 value, the authors [7] obtained a fulfillment
of the above-mentioned conditions if the energy interval
is properly chosen, for example (10-22.5) MeV for Z=50
nuclei or (10-25) MeV for N=50 nuclei. However, alto-
gether with a reasonable description of the GDR’s width,
the PC gives an additional strength in the low-energy re-
gion (see Figs.1,2). So, this low-energy contribution of
the strength is usually neglected in such an analysis of
the integral characteristics based on the Lorentzian fit.

B. Results

Here we discuss our results for the long chain of tin
isotopes from 100Sn up to 176Sn. Figs.1 and 2 show the
strength functions for twelve Sn isotopes. In the follow-
ing subsections, the dipole excitations are studied and
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FIG. 2: (Color online) 1− strength functions within
QRPA (dashed curves) and QTBA (solid curves) in
132Sn,136Sn,142Sn,156Sn,166Sn, 176Sn. For 132Sn and 176Sn
isotopes, the solid green curves show calculations within the
continuum RPA.

the GDR and PDR analyzed along the Sn isotopic chain.
The general idea behind such an investigation is to un-
derstand if there are some common trends for dipole ex-
citations in stable and unstable isotopes on both sides of
the β-stability valley and if they can be described within
one unique scheme and with one unique force like SLy4.
One can argue that such a force may not be appropri-
ate for unstable species but this force is among the most
suited tool and can provides us with valuable theoretical
findings, for example, as the non-Lorentzian shape of the
GDR for very neutron-rich nuclei such as 156Sn, 166Sn
(see Fig.2), as discussed below.

1. Dipole excitations and Giant Dipole Resonances

Fig.3 shows the calculated integral characteristics of
the dipole excitations for fifteen stable and unstable Sn
isotopes. The smearing parameter is ∆ = 200 keV for all
calculations. The E1 response integral characteristics for
the mean energies and dispersions are calculated using
the standard definitions

< E >= E1,0 =
m1

m0

, D =

√

m2

m0

− (
m1

m0

)2, (1)

where the energy moments mk for the energy interval
∆E = Emax − Emin are calculated as follows

mk =

∫ Emax

Emin

dE EkS(E). (2)
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FIG. 3: (Color online) Integral characteristics of the 1− state
for some Sn isotopes: upper panel- the GDR mean energy
versus the atomic mass number A in the (0-30) MeV in-
terval; lower panel- the GDR dispersion versus A for the
same interval. RQTBA and RQRPAZ results are taken from
Refs. [7, 50], respectively.

First we check our approach on the stable Sn isotopes
(116Sn, 120Sn, 124Sn) and obtain, as shown in Fig.3, a rea-
sonable agreement with available experimental data [20].
The dipole excitation for these nuclei has a well visible
Lorentzian-like form with parameters which may slightly
vary depending on the adopted model [20]. Though our
results are not fitted by a Lorentzian form and only mo-
ments are compared, it can be seen that we have a reason-
able agreement for both the mean energy and the width
of the E1 resonance. The 132Sn and 130Sn are the only un-
stable tin isotopes which were probed to study the GDR
and PDR [46]. Though the SLy4 forces works quite well
for stable nuclei there is no proof that it is good for un-
stable ones. In Ref. [8] along with SLy4 Skyrme forces
we probed BSk5 [47] and SkM* [48] for 132Sn. In all
the three cases we obtained very similar mean energy
values and widths (i.e 14.3 MeV and 2.9 MeV, respec-
tively, for the SLy4 force), while the experimental data
are 16.1± 0.7 MeV and 4.7± 2.1 MeV [46]. It has to be
noted that other theoretical approaches (see Fig. 3) [7, 50]

give very similar results which possibly means that fur-
ther experimental investigations on the 132Sn GDR may
be needed.

Our calculations show a noticeable difference both be-
tween (Q)RPA and ETFFS(QTBA) approaches and sta-
ble and unstable nuclei (Figs. 1-3). The results for in-
tegral characteristics (Fig. 3) clearly show the necessity
to take the PC into account for a proper determination
of the GDR width. For the A = 100 − 132 nuclei, the
PC gives rise to an increase of the width by as much as
2 MeV as compared with the (Q)RPA predictions. This
PC effect is also important in A > 132 nuclei though to
a lesser extent. Fig. 3 shows two distinct regions for the
integral characteristics. The first region corresponds to
the stable isotopes, 116 < A < 124, for which the integral
characteristics follow the well-known phenomenological
systematics (e.g. E0 ∝ A−1/3 and Γ ∝ A−2/3). The sec-
ond region includes unstable isotopes, A > 132, for which
these systematics fail. Similar conclusions for mean ener-
gies can be made out of the calculations obtained within
the RQRPAZ approach [50].

Here we suggest another empirical systematics which
describes quite well the mean energy in both regions de-
fined above:

E0 = 78A−1/3cos2α+ 12A−1/2sin2α, (3)

where α = (N − Z)/A is the neutron excess and the
factor 12A−1/2 describes empirically the pairing gap, see
[51]. One can see that this is in accordance with the re-
sults in Fig. 6 (see below). The first term is responsible
for the collective GDR while the second one reflects the
leftovers of the GDR, namely the non-collective particle-
hole excitations. This formula reflects the fact that the
mean energy depends on the superposition of these two
kinds of excitations, while the degree of mixing is de-
fined by the neutron excess α. The second term becomes
important for unstable nuclei and is correlated with the
increased low-lying E1 strength. As mentioned above,
the E1 strength can hardly be described by a Lorentzian
function over the whole isotopic chain. One may try also
to separate out the GDR and PDR in the same way as
done in Ref. [50] using 132Sn as the benchmark in the def-
inition of the border between these two resonances. This
procedure is somewhat artificial and anyway for unstable
nuclei the GDR centroid energy itself does not follow the
systematics, nor does the mean energy taken in the whole
(0−30) MeV interval. Another interesting feature is that
the dispersion (Fig.3, lower panel) is minimal at neutron
magic numbers (N=50, 82, 126) and maximal for open
shell nuclei. Likewise for the mean energy, the dispersion
is quite close to the lorentzianian width for stable nuclei
only, while the contribution of the low-lying tail to the
dispersion for the second region is increasingly important
with the increasing of the neutron excess.
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2. Pygmy Dipole Resonances

The division of the dipole excitation between the GDR
and PDR regions seems rather artificial though the na-
ture of the vibrations is rather different: the low-energy
neutron and proton transitional densities are vibrating
mainly in phase, while in the GDR energy region these
are out of phase (see for example the case of 208Pb in
Ref. [49]). But there is no general rule for defining
the interval of pygmy dipole excitations for a given nu-
cleus. We can only visually outline the transition re-
gion between the GDR and PDR. We find that for the
whole Sn chain this region is rather well described by
the 8 to 10 MeV interval, as illustrated in Fig. 4. This
is why we consider here the (0 − 10) MeV interval for
all the nuclei to get a general understanding about the
low-lying dipole strength: the resulting mean energies
< E >= E1,0 and ΣB(E1) values are shown in Fig. 5,
along with the RQTBA [7] and RQRPAZ [50] results as
well as the experimental data available [30, 52]. We com-
pare our results with these two relativistic approaches as
they are the only available calculations of integral charac-
teristics for both the GDR and PDR in many isotopes of
the Sn chain and they have been obtained within a self-
consistent scheme. It has to be noted that experimental
data is available for 112Sn, 116Sn and 124Sn isotopes up to
the neutron separation energy (the low-lying strength is
mostly concentrated in the (4− 8.5) MeV interval) while
the ”pygmy region” for 130Sn and 132Sn isotopes is not
indicated in Ref. [52].

We obtain a reasonable agreement with experiment for
the < E > values summed over the (4−8.5) MeV interval
(Fig. 5) while the integral strength is a few times larger
than the experimental value. A similar behavior was ob-
served in other self-consistent calculations [50], see Fig.5.
We find some sort of agreement with the experimental
132Sn data (for our (0 − 10) MeV interval) which gives
an integrated strength of the PDR of about (4±3)% of
the EWSR [53], while our calculation gives 4% with the
PC included and 2% without. At the same time the cal-
culated and experimental GDR mean energies are rather
different and moreover the experimental mean energy is
out of the general trend (Fig.3). Out of our self-consistent
calculations for the Sn chain and other non self-consistent
calculations as in Ref. [5], we conclude that the PDR is
very model-dependent and probably the force adopted
needs some modifications for a simultaneous description
of both the GDR and PDR. It is rather evident also that
further experimental investigations are needed as well.

Figs. 4-5 demonstrate that there is a distinct differ-
ence for characteristics of a low-lying strength for stable
and unstable nuclei. Namely, the PC contribution to the
ΣB(E1) values, i.e. the difference between QRPA and
QTBA predictions, is small for nuclei in the A > 132
region, while in the A < 132 region the PC has a rather
important impact. Moreover, for nuclei such as 112Sn,
116Sn and 124Sn (Fig.4, upper panel) the PDR is al-
most completely defined by complex configurations in the
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FIG. 4: (Color online) For each of the stable 124Sn and un-
stable 136Sn, 166Sn, the upper panel shows the strength func-
tion obtained within QRPA (dashed curves) and QTBA (solid
curves) in the (0-10)MeV interval and the lower pannel the
corresponding transitional densities for protons (red curves)
and neutrons (black curves) summed over the indicated inter-
vals. The smearing parameter is 20 keV.

(4 − 8.5) MeV interval. For the < E > values we also
have a ”border” at A = 132: in the A > 132 region there
is almost no PC contribution and a decrease of < E >,
while in the A < 132 region this picture is more compli-
cated: the PC contribution “corrects” an A-dependence
of the < E > values which would be expected within
the QRPA approach, and in this sense the PC effect is
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spectively. The results for Goldhaber-Teller model are based
on the work [54]. Experimental results for < E > and
ΣB(E1) values are taken from Refs. [30, 52], respectively.

important.
We find that the structure of the PDR excitation spec-

trum is very specific to each nucleus. It is hardly a col-
lective mode and can not be described by some system-
atics like the GDR. For example, the Goldhaber-Teller
model adapted for neutron-rich nuclei in Ref. [54] gives
a rather smooth A-dependent behaviour for the PDR
mean energy and its strength (Fig. 5) which is not pre-
dicted by our calculations and which is not really con-
firmed by available experimental data. This is easy to
understand from the simple Brown-Bolsterly model for
the (Q)RPA approach. Indeed, in this model the excita-
tion properties are determined by the structure of single-
particle or single-quasi-particle levels. Namely, the larger
the difference between the neighbouring levels the more
collective the appropriate (Q)RPA 1−-level. From this
point of view, the collectivity is determined by the struc-
ture of single-(quasi)particle levels and, therefore, the
PDR structure is rather specific to each nucleus. More-
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FIG. 6: (Color online) Comparison of the neutron separation
energy with the minimal particle-hole energy (Ep + Eh) and
the minimal energy (Ep + Eh + ω, where ω is the energy of
the lowest phonon) for the different Sn isotopes. See text for
more details.

over, recently a thorough theoretical analysis on the PDR
collectivity in 132Sn was performed in Ref. [55] which
shows that the collectivity is rather weak and only a few
particle-hole configurations contribute to the PDR. The
authors demonstrated that such contributions are force-
dependent and cooperative but not coherent.
In order to understand better the PC role in the PDR

region for stable and unstable nuclei it is useful to con-
sider the correlation between the neutron separation en-
ergy and the beginning of the low-energy excitation spec-
trum. In Fig. 6, we compare the neutron separation en-
ergy with the minimal particle-hole energy (Ep+Eh) and
the minimal energy (Ep+Eh+ω) (where ω is the energy
of the lowest phonon for a given isotope), which approx-
imately determine the “beginning” of the low-lying tail
for the (Q)RPA and QTBA models, respectively. We see
clearly that the smaller the neutron separation energy
the lower the energy of the first 1− level. One can see
also a border at A = 132, i.e a direct correlation and
similarity in the beginning of the spectrum within both
the (Q)RPA and QTBA for the neutron-rich isotopes.
Due to the small neutron separation energy in the very
neutron-rich Sn isotopes a relatively strong low-lying tail
of the strength function arises very naturally both within
the QRPA and QTBA (see Figs. 2,4). So, there is no no-
ticeable difference here between these two approaches.
In contrast, for the lighter Sn isotopes (see Figs. 1,4) a
considerable contribution of the PC can be observed.
To conclude our analysis of the PDR, we consider tran-

sition densities which is now a standard way in investi-
gating the nature of the nuclear excitations. Recently
this analysis was performed for some tin isotopes within
the QRPA approach [5, 55, 57] and within the relativistic
QTBA [56]. In Fig.4, we show our self-consistent QRPA
and QTBA results for the stable 124Sn isotope and the
unstable 136Sn and 166Sn. We obtain a rather similar
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behaviour for 136Sn and 166Sn isotopes within the QRPA
and QTBA approaches: below 8 MeV (136Sn) and 9 MeV
(166Sn) the proton and neutron transition densities are
in phase in both approaches, i.e. both have an isoscalar
character and are clearly dominated by the neutron con-
tribution at the surface. At higher energies they show an
isovector behaviour. Globally, our results are in accor-
dance with the QRPA results of [5, 57] for stable nuclei.
However, we would like to emphasize some major differ-
ences between the QRPA and QTBA approaches as far
as the transition densities for the stable 124Sn isotope
are concerned (Fig.4). Physically this corresponds to the
fact that the PC gives a considerable contribution to the
low-lying strength in stable nuclei, which can clearly be
seen in Fig. 4 and in Fig. 1 for other stable nuclei.
In summary, we find that with the inclusion of the PC

the low-lying tail is predominantly of isoscalar nature up
to about 8 MeV for all considered Sn isotopes while the
(≈ 8 − 10) MeV interval is a transition region towards
the isovector type of excitation which distinguishes the
GDR. We also conclude that the inclusion of the PC is
necessary to explain the PDR integral properties (includ-
ing the integrated strength) in stable isotopes. Moreover
it is mostly the PC that contributes below the neutron
separation energy. For the A > 132 nuclei, and especially
for unstable neutron-rich nuclei, the PC leads essentially
to a redistribution of the PDR strength.

III. RADIATIVE NEUTRON CAPTURE CROSS

SECTIONS

The presence of the PDR in neutron-rich nuclei is of
particular interest since, if located well below the neu-
tron separation energy, it can significantly increase the
radiative neutron capture cross section and affect the
nucleosynthesis of neutron-rich nuclei by the so-called r-
process [15, 16, 22, 58]. Similarly, the presence of ex-
tra strength at low energy in neutron-deficient nuclei can
be at the origin of an increase of the radiative proton
capture or photoproton emission that take place on the
left side of the valley of β-stability during the so-called
rp-process or p-process, respectively [59]. Since such nu-
cleosynthesis processes involve exotic nuclei that cannot
be produced in the laboratory (at least on the neutron-
rich side), only self-consistent calculations can provide a
reasonable prediction of their electromagnetic excitation
properties. The impact of our newly-derived strength
functions on the reaction cross section are discussed be-
low.

A. Comparison between QTBA and QRPA

To estimate the impact our new QTBA strength can
have on the radiative neutron capture rate of astrophys-
ical interest, the neutron capture cross section is calcu-
lated using the reaction code TALYS [60]. The strength

function with and without the PC are included in the
calculation of the electromagnetic de-excitation transmis-
sion coefficients. The resulting radiative neutron capture
cross sections calculated with the strength functions of
Fig. 7 are shown in Fig. 8 for the three Sn isotopes.

In Ref. [26], we studied the 143Nd(n,γ)144Nd cross
section using the non-self-consistent ETTFS(QTBA)
strength function. Comparison with the QRPA version
showed that the PC inclusion increases the cross section
by a factor 2 and improves the agreement with experi-
ment [61]. Very recently, the results of the radiative neu-
tron capture cross sections calculations within the self-
consistent relativistic QTBA were performed for the four
tin isotopes [62].

Since the electromagnetic transmission coefficient cor-
responds to an integral overlap of the de-excitation
strength function with the nuclear level density, only
the strength function in a restricted energy range be-
low the neutron separation energy play an important role
for the estimate of the radiative neutron capture rate
[58, 63]. This range corresponds to γ energies of typi-
cally 2 MeV< Eγ <4 MeV though it may be higher in
neutron-deficient nuclei or just before crossing a neutron
closed shell. Therefore if located in this energy range,
the PDR might provide quite a large contribution to the
radiative cross section. For neutron-rich nuclei, the mean
PDR energy is relatively low and the integrated strength
high (Fig. 5), so that the PDR contribution may become
significant [15, 16].

Here we consider three different compound Sn nuclei,
namely, the stable 124Sn one and unstable 132Sn and150Sn
isotopes. In our earlier calculations [26, 64] we used the
microscopically calculated (Q)RPA and QTBA strength
functions which have been folded with a Lorentzian in or-
der to reproduce the expected width of the strength func-
tion. However, such a procedure tends to smear out the
detailed structure of the strength function that may be of
interest in the specific energy of relevance (as discussed
above). For this reason, we consider here the realistic
strength functions without any Lorentzian folding.

We consider two variants of the QTBA calculations in
order to compare the ETFFS(QTBA) calculations with
and without (QTBA-ws) the subtraction procedure (see
the end of Sect. IIA). In the variant QTBA-ws, the isovec-
tor part of the calculated effective interaction strength
fex is renormalized in order to bring (in this approach)
the mean energyE0 (Eq. 2) to the QTBA predicted value,
i.e to fulfill the condition E0(QTBA) = E0(QTBA−ws).
It turns out that the change of the fex value is no more
than 10% (more precisely 8, 5 and 10% for 124Sn, 132Sn
and 150Sn, respectively). We find that the difference be-
tween the QTBA and QTBA-ws strength functions is not
large, both of them differing significantly from the QRPA
predictions (see Fig. 7). The differences between QTBA
and QTBA-ws are essentially found in the redistribution
of the strength. This effect is however large enough to im-
pact the radiative neutron capture cross section as shown
in Fig. 8. In particular, Fig.8 shows that the QTBA-ws
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FIG. 7: (Color online)1− strength functions within
QRPA (dotted curves), QTBA (solid curves) and QTBA-
ws (short-dashed curves) for 124Sn,132Sn and 150Sn isotopes.
See text for details

gives a larger cross section compared with the QTBA for
all the three isotopes although the GDR mean energies
are the same for both variants. The comparison with the
corresponding RQTBA calculations for 131Sn(n, γ)132Sn
cross section [62] shows, in general, similar behaviour, ex-
cept for specific energies like those around En = 100 keV
for which our cross section is noticeably smaller than the
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FIG. 8: (Color online) Radiative neutron capture cross sec-
tions for 124Sn, 132Sn and 150Sn isotopes obtained with the
strength functions which were calculated within the QRPA,
QTBA and Kopecky-Uhl approaches. See text for details.

RQTBA one. These deviations may stem from the spe-
cific structure of the strength function in the energy range
of relevance, as well as from the use of different nuclear
ingredients in the cross section calculation, such as nu-
clear level densities.

In Refs. [26, 64], where the microscopic strength func-
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tion is folded with a Lorentzian function, we found that
for the stable 124Sn the cross sections obtained with
QRPA and QTBA were almost identical. Comparing
the QTBA and QRPA strength functions (Fig.7) and
cross sections (Fig.8) allows us to deduce directly the
role of the PC (without any interference of an additional
Lorentzian smoothing). In particular, the inclusion of
the PC increases the cross sections by a factor 2-3 in
the QTBA-ws case (Fig. 8). In the latter case, the cross
section obviously follows the strength function shown in
Fig. 7, i.e. the extra low-lying strength is responsible
for an increase of the reaction cross section (and conse-
quently of the Maxwellian-averaged reaction rate of as-
trophysical interest) by about a factor of 3 with respect
to the predictions based on the HFB+QRPA calculation
with BSk7 Skyrme force [16]. More specifically, the low-
energy E1 strength originating from the PC contribu-
tion increases the cross section at 0.1 MeV (an energy
of relevance for the r-process nucleosynthsesis) by about
30% for 123Sn(n,γ)124Sn for the QTBA and by a factor
of about 2 for QTBA-ws. For the 131Sn(n,γ)132Sn these
figures are even larger and for 149Sn(n,γ)150Sn we ob-
tained a similar effect for the QTBA-ws only. Thus, in
this section we demonstrated the noticeable sensitivity of
the radiative neutron capture cross section with respect
to the model (QRPA, QTBA or QTBA-ws) as well as the
force used (SLy4, BSk7).

B. Comparison with phenomenological models

The Lorentzian approach has been widely used for
practical applications, though it suffers from shortcom-
ings of various sorts. On the one hand, the location of
the GDR maximum energy and width remains to be pre-
dicted from some underlying model for each nucleus. For
many applications, these properties have often been ob-
tained from a droplet-type model or from experimen-
tal systematics [20]. As shown in Fig. 3, these esti-
mate may differ significantly from the predictions ob-
tained from sounder microscopic models. In addition, the
Lorentzian model tends to overestimate the E1 strength
at energies below the neutron separation energy. Dif-
ferent parametrizations or functional forms (including in
particular an energy- and temperature-dependent width)
have been proposed (see e.g. [20, 65]) to reconcile ex-
perimental data in the photon or radiative neutron cap-
ture channels, but none of the proposed closed forms can
nowadays explain the various trends observed at low en-
ergies. Besides the Lorentzian approach cannot provide
any predictions on the low-energy PDR, neither on its
presence, nor on its characteristics. For this reason, it
is of particular interest to analyze to what extent our
predictions based on self-consistent microscopic models
differ from those used in practical applications.
In Fig. 8 our results are compared with those obtained

with the phenomenological Generalized Lorentzian
(GLO) strength function [65]. For the stable 124Sn, the

GLO cross section is rather similar to those obtained
within the ETFFS approach, to be exact, this cross sec-
tion curve is just between the QTBA and QTBA-ws ones,
although the strength functions can differ at low energies
below the neutron separation energy (Fig.7). However,
for neutron-rich nuclei, such as 132Sn and 150Sn, the cross
section obtained with the GLO strength on the one hand,
and both the QRPA and QTBA, on the other hand, dif-
fer, especially for 150Sn. As shown in Sect. II, the main
reason lies in the A-dependence of the integral charac-
teristics, but also in the existence of a low-lying strength
predicted by the microscopic models. Note that the
GLO parameters used here for 150Sn correspond to the
RIPL2 recommended systematics, i.e. E0 = 14.81 MeV,
Γ = 4.47 MeV and σ0 = 341.5 mb which strongly differ
from our microscopic predictions (see Fig. 3). Fig. 7 also
shows the spreading of the strength function down to the
lowest energies, i.e in the vicinity of the neutron separa-
tion energy, while the GLO model would only provide the
tail of the GDR strength at these energies. These com-
parisons demonstrate the non-applicability of the empir-
ical systematics and the necessity to make use of self-
consistent approaches for neutron-rich nuclei. (On the
comparisons of M1 resonances with used systematics see
Ref.[66].)

IV. CONCLUSION

The electric dipole strength function has been esti-
mated on the basis of the ETFFS(QTBA) model which
simultaneously takes into account the (Q)RPA configura-
tions, the more complex 1p1h⊗ phonon or 2 quasiparticle
⊗ phonon configurations and the single-particle contin-
uum. For the long chain of tin isotopes, the strength
functions have been determined within our DTBA ap-
proach which is a discretized self-consistent version of the
ETFFS(QTBA). The QTBA strengths have been com-
pared with the (Q)RPA ones which allowed us to study
the contribution of the phonon coupling along the whole
isotopic chain.
Our conclusions concerning the GDR and PDR prop-

erties clearly differ depending on the nuclear region con-
sidered, namely the A < 132 and A > 132 regions. More
precisely,

1. for neutron-rich A > 132 Sn isotopes, we find, both
within QRPA and QTBA, a significant difference
in the A-dependence of the GDR mean energy with
respect to the standard phenomenological system-
atics. Our Eq. 3 gives a new phenomenological sys-
tematics;

2. although for all considered isotopes, the PC contri-
bution to the GDR width is very important quan-
titatively , its contribution to the nuclei of A > 132
region is relatively smaller than it is for the A < 132
nuclei;
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3. the PC contribution to the PDR integral character-
istics < E > and ΣB(E1) summed over the (0-10)
MeV interval is small for the neutron-rich isotopes;

4. the transition densities in most of the low-energy
region are mainly of isoscalar nature both within
the QRPA and the QTBA approaches. The PC
contribution to the transition densities also affects
the transition densities, especially in stable nuclei.
Globally, the isoscalar behavior is revealed on the
energy interval considered here (1 MeV). It is not
found that the transition density of all individual
peaks in the low-energy region is of isoscalar nature.
We note also that for these reasons the QRPA can-
not explain quantitatively the isoscalar-. -isovector
splitting of the PDR in the stable 140Ce observed
in the (α, α′γ) reaction [57], see [21] as well.

Such a different manifestation of the PC for nuclei with
A < 132 and A > 132 correlates very well with the neu-
tron separation energy. Namely, the differences are much
smaller for neutron-rich nuclei than they are for A < 132
nuclei. Just due to this fact the low-energy parts of the
strength functions in neutron-rich nuclei are rather sim-
ilar within the QRPA and QTBA.
The radiative neutron capture cross sections for

124Sn,132Sn and 150Sn were calculated with the QTBA
and QRPA strength functions and shown to be sensi-
tive to the predicted low-lying strength. Significant de-
viations from the phenomenological GLO approach [65]
are also obtained for the strength functions, and con-
sequently for the neutron capture and photoabsorption

cross sections, for the very neutron-rich isotope 150Sn.
A direct comparison between the QTBA (including the
PC) and GLO cross sections shows that the neutron cap-
ture cross section on very neutron-rich nuclei may be in-
creased by 2 order of magnitude with respect to the tradi-
tional use of phenomenological models. Our results con-
firm the necessity to use self-consistent microscopic mod-
els when dealing with exotic nuclei. Therefore, nuclear
data libraries should not recommend such phenomenolog-
ical models in this case, but rather point towards newly-
developed microscopic large-scale calculations.

The PC and single-particle continuum, which have
been included, in addition to the QRPA effects, in our
calculations, are necessary ingredients to describe the
electric GDR and PDR properly. Nevertheless, it is nec-
essary to use some renormalization procedures (either by
adjusting some interaction parameters or applying the
subtraction method) to obtain the correct value of the
spurious state energy. In addition, the approach still
needs to include the self-consistency at the level of com-
plex configurations. Therefore, further developments are
needed (see also [21], where some unsolved issues in the
PDR physics are discussed).
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