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Self-consistent calculations within the Green’s function method
including particle-phonon coupling and the single-particle
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Abstract. The Green’s function method in the Quasiparticle Time Blocking Approximation is applied to
nuclear excitations in 132Sn and 208Pb. The calculations are performed self-consistently using a Skyrme
interaction. The method combines the conventional RPA with an exact single-particle continuum treatment
and considers in a consistent way the particle-phonon coupling. We reproduce not only the experimental
values of low- and high-lying collective states but we also obtain fair agreement with the data of non-
collective low-lying states that are strongly influenced by the particle-phonon coupling.

PACS. 3 4.50.-s – 3 4.50.Ez

1 Introduction

Theoretical investigations of unstable neutron rich nuclei
require nuclear mean fields in experimentally unexplored
mass regions. Therefore we have generalized an approach
formulated in the many-body Green’s function formal-
ism which includes single-particle degrees of freedom and
in a consistent way collective nuclear excitations [1,2,3]
by incorporating self-consistent nuclear mean fields de-
rived from Skyrme interactions. The exact treatment of
the continuum is the main difference of the present ap-
proach compared to a previous paper [4]. The continuum
is first of all important for the distribution of the high-
lying multipole strength but it also allows a clear defi-
nition of the size of the configuration space. We demon-
strate these effects by comparing the present results ob-
tained with the exact continuum treatment and previous
results, where the continuum was discretized. An equally
important point concerns the energies of the low-lying
non-collective states. Here we investigate the influence of
the phonons on such excitations. Whereas the low-lying
collective states are influenced by the single-particle spec-
trum and the residual particle-hole (ph) interaction, the
non-collective states obtained in RPA calculations are only
little affected by the interaction and are very close to
the unperturbed ph-energies. But these states are influ-
enced by the particle-phonon coupling. Calculations [5]
performed with the Migdal approach [6], where experi-
mental single-particle energies are used, gave good agree-

Correspondence to: j.speth@fz-juelich.de

ment with the data for collective and non-collective states
as the latter ones are close to the unperturbed experi-
mental ph-energies. This is different in self-consistent cal-
culations, where the single-particle spectrum depends on
the effective mass m∗. The various Skyrme parametriza-
tions, which all reproduce the ground-state properties very
well, differ considerably in the effective mass. Many self-
consistent nuclear structure calculations are performed
with parameter sets which correspond to effective masses
in the vicinity of m∗/m ≈ 0.7-0.8. It is obvious that in
those cases the collective states may be reproduced cor-
rectly but the non-collective ones will differ appreciably
from the experimental value. All this will be discussed
in sections three and four. In the next section we give a
short introduction into the present approach and compare
it with existing models. In the last section we summarize
the results and draw some conclusions.

2 Method

We use the Quasiparticle Time Blocking Approximation
(QTBA) formulated in [3], see also the preceding work [1].
Some details of the self-consistent application are given in
[4]. Here we only summarize the crucial equations. The
conventional 1p1h Random Phase Approximation (RPA)
written in the configuration space of the single-particle
wave functions ϕν has the form:

(ǫν1
− ǫν2

− Ω) χm
ν1ν2

= (1)
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(nν1
− nν2

)
∑

ν3ν4

F ph
ν1ν4ν2ν3

χm
ν3ν4

.

The ǫν are the single-particle energies, F ph is the ph-
interaction, nν are the occupation numbers: 0 and 1 for
particles and holes, respectively. In the self-consistent ap-
proach all these input data follow from the mean field
solution. From equation (1) one obtains the excitation en-
ergy Ω of an even-even nucleus and the corresponding
ph-transition matrix elements χm

ν1ν2
.

For the numerical applications it is more convenient to
solve the equation in the r-space because this allows the
treatment of the continuum in the most efficient way. In-
stead of the homogeneous integral equation (1) one solves
an inhomogeneous equation of the form:

ρ(r, Ω) = −

∫
d3

r
′A(r, r′, Ω)Qeff(r′, Ω) (2)

−

∫
d3

r
′d3

r
′′A(r, r′, Ω)F ph(r′, r′′)ρ(r′′, Ω) .

where Qeff(r′, Ω) is an external field and A(r, r′, Ω) is
the ph-propagator in the r-space. The poles of this equa-
tion are the excitation energies of an even-even nucleus
and ρ(r, Ω) at a given pole is the corresponding transi-
tion density.

The inclusion of phonons gives rise to a modification
of the single-particle energies as indicated in Fig. 1(b) for
particles and Fig. 1(c) for holes. It also gives rise to a
modification of the ph-interaction. This is shown in Fig.
1(d). The QTBA version which we used here considers
some more corrections. A detailed derivation is given in
Refs. [3,7]. A further advantage of the r-space is that the
structure of Eq.(2) is not changed if the phonons are in-
cluded, only the propagator A and the interaction F ph are
modified.

(a) (b)

(c) (d)

Fig. 1. Graph (a) denotes the uncorrelated ph-propagator of
the RPA. Corrections due to phonons are indicated in (b-d).
The graphs (b) and (c) are corrections to the propagator and
(d) is a contribution to the ph-interaction. The wavy lines and
the solid lines denote the phonons and the single-particle prop-
agators, respectively.

It is important to point out that no new parameters
appear if one introduces phonons. The modified single-
particle energies ǫ̃ν can be calculated from the formula:

ǫ̃ν1
= ǫν1

+
∑

ν2;i

∣∣γν2;i
ν1

∣∣2

ǫ̃ν1
− Ωi − ǫν2

, (3)

where the second term on the right side is graphically
represented by the upper part of graph (b) in Fig. 1. The
vertex γµ;i

ν , which couples the quasi-particle state ν to the
core excited configuration µ⊗i, is given by:

γµ;i
ν =

∑

α,β

F
ph
να;µβχi

αβ , (4)

where χi is the RPA wave function (Eq. (1)) of the phonon
considered. The corresponding energy-dependent correc-
tion to the ph-interaction represented by graph(d) in Fig.
1 has the form

F
ph,phonon
αµ,βν (Ω, ǫ, ǫ′) =

∑

i

(γµ;i
α )∗γν;i

β

ǫ − ǫ′ + (Ωi − iδ)
. (5)

All input data are obtain from the mean field and the con-
ventional 1p1h RPA, respectively. Other corrections can
be calculated in a similar way.

3 Numerical details

We calculate the mean field within the HFB approach
with the code HFBRAD [8] and use in all applications
the SLy4 [9] parametrization of the Skyrme ansatz. The
excited states are calculated with a computer code which
is based on the the QTBA version [3,7] of the extended
theory of finite fermi systems (ETFFS) [1,2]. Compared to
our previous calculations [4] we have modified the code in
such a way that the single-particle continuum is treated
exactly. In self-consistent calculations the ph-interaction
is given by the second derivative of the energy functional.
We employ the same approximations as in Ref. [4]. We
apply the same procedure to the theoretical distributions
[1]. The theoretical mean energies E0, resonance widths Γ
and maximum values of the cross section σ0 are extracted
under the condition that the first three energy-weighted
moments of the Lorentzian and the theoretical distribu-
tion of the total photoabsorption cross section should co-
incide.

4 Results

4.1 Low-lying collective and non-collective states

When one solves the RPA equation one obtains as many
solutions as one has (discrete) ph-components. From the
schematic model by Brown and Bolsterli [10] one knows
that there is one collective state for each multipolarity
and isospin which is strongly shifted in energy, whereas
the remaining states are little influenced by the interac-
tion. As the isoscalar interaction is attractive the first ex-
cited state of each multipolarity (in RPA and QTBA) is
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shifted to lower energies, whereas the other states remain
close to their unperturbed ph-energies. Beyond this shift
due to the ph-interaction, there is an additional energy
shift in QTBA which is due to the phonon coupling. This
affects all states. As discussed in [4] the phonons com-
press the single-particle spectrum and therefore the un-
perturbed energies in the propagator of the QTBA are
compressed compared to the HF energies. This effect and
its consequences are the main issue of this chapter.

Table 1. The four lowest 3− states in 208Pb. Here we compare
the results with and without phonons for the bare ph-energies
and the solutions of RPA and QTBA. In both cases the single-
particle continuum is treated exactly.

HF HF+Ph RPA QTBA Exp.
5.76 4.30 3.25 2.43 2.61
5.93 4.93 5.96 4.53 4.05
6.03 4.95 6.18 4.96 4.25
6.68 5.17 6.65 5.13 4.70

In Tables 1-4 we show in the first column (HF) the
unperturbed ph-energies calculated with the SLy4 para-
metrization. In the next column (HF+Ph) the unperturbed
energies of the QTBA propagators are shown that are
compressed due to the phonon coupling. In the third and
fourth column we present the RPA and QTBA results,
respectively.

Table 2. Same as in Table 1, but for the four lowest 5− states
in 208Pb.

HF HF+Ph RPA QTBA Exp.
4.93 3.97 4.13 3.30 3.20
5.01 4.03 5.06 4.07 3.71
5.76 4.92 5.48 4.52 3.96
5.93 4.9 5.92 4.99 4.13

We first discuss the levels with the multipolarity 3− in
Table 1. The first excited state is the most collective one
in 208Pb and therefore shows the strongest shift due to the
ph-interaction. The other levels are only little affected by
the interaction. This holds for RPA and QTBA and can
been seen if one compares column I and column III (for
RPA) and column II and column IV (for QTBA), respec-
tively. One may argue that the agreement between theory
and experiment for the lowest state calculated in RPA is
not too bad. But it is clear that the energies of the other
(RPA)-states strongly deviate from the experiment. This
situation is typical for all effective Lagrangians with an ef-
fective mass less then one. In the present case, where one
uses m∗/m = 0.70, the compression due to the phonons is
of crucial importance for a quantitative description of col-
lective and non-collective states. The compression of the
spectra for the four lowest 3− configurations can be de-
duced from column I and column II. One realizes that the

phonons compress the spectra by more then 1MeV which
strongly improves the agreement between our QTBA re-
sults and the data for the collective as well as the non-
collective state. This is also true for the other multipolar-
ities which are shown in table 2 - table 4.

Table 3. Same as in Table 1, but for the four lowest 2+ states
in 208Pb.

HF HF+Ph RPA QTBA Exp.
5.91 5.052 5.33 4.39 4.08
6.43 5.29 6.20 5.26 4.93
6.83 5.51 6.42 5.96 5.56
7.98 7.360 7.12 6.43 5.72

Table 4. Same as in Table 1, but for the four lowest 4+ states
in 208Pb.

HF HF+Ph RPA QTBA Exp.
5.91 5.05 5.59 4.61 4.32
6.43 5.39 6.17 5.17 4.91
6.83 5.63 6.77 5.52 5.22
7.98 7.36 8.05 7.18 5.56

Table 5. Low-lying collective states in 132Sn. Here we com-
pare the results with and without phonons and with the cor-
rect single-particle continuum and discretized continuum states
with the data. We show the first excited state of each multi-
polarity.

full continuum disc.basis
RPA QTBA RPA QTBA Exp.

2+ 4.46 3.70 4.46 2.10 4.04
3− 5.19 4.60 5.08 3.00 4.35
4+ 5.00 4.20 – 2.85 4.42

Table 6. Giant dipole resonance in 132Sn. Here we compare the
results with and without phonons and with the correct single-
particle continuum and discretized continuum states with the
data [11]. In the case of QTBA* the isovector force has be
increased by 10%.

full continuum
RPA QTBA QTBA* Exp.

E(MeV) 14.3 13.8 16.1 16.1(7)
Γ (MeV) 3.4 4.0 4.5 4.7(2.1)

discrete basis
RPA QTBA

E(MeV) 14.3 12.5 16.1(7)
Γ (MeV) 3.8 5.2 4.7(2.1)



4 N Lyutorovich et al.: Self-consistent calculations

The effect of the phonons is also demonstrated in Fig.
2. Here the three lowest ph-energies for the 2+ (which are
the same as for the 4+) are shown. The full line indicates
the HF and the dashed ones the HF+Phonons results. One
notices a shift about 1 MeV due to the phonon coupling.
The theoretical ph-energies may be compared with the
corresponding three lowest experimental energies at 5.06
MeV, 5.57 MeV and 5.84 MeV.

4 4.5 5 5.5 6 6.5 7
E [MeV]

0

2e+07

4e+07

6e+07

S(
E

) 
[e

2 fm
8 / M

eV
]

Fig. 2. The three lowest ph-energies for the 2+ ( and 4+) mul-
tipolarity in 208Pb, in the HF case (full line) and the HF+Ph
case (dashed).

In [4] we published results for low-lying collective states
in 132Sn obtained within the same theoretical framework.
The same Skyrme parametrization was used but the nu-
merical calculations were done in a discrete configuration
space. This has consequences for the overlap of the ph
wave functions and the renormalization of the interaction
(the spurious state has to be at zero energy). With the
present choice the (compressed) uncorrelated ph excita-
tions are comparable with the experimental values. In Ta-
ble 5 we compare the previous RPA and QTBA results
with the present results where the continuum was included
in an exact way. The present theoretical values agree very
nicely with the data, whereas the previous results were
much too low. The comparison shows that there is an ar-
bitrariness in the size of the configuration space if one uses
a discretization method and it also demonstrates that one
has to chose the number of phonons in such a way that
the compressed single-particle spectrum comes close to the

Table 7. Giant dipole resonance in 208Pb. Here we compare
the results with and without phonons with the data. In both
cases the single-particle continuum is treated exactly. In the
case of QTBA* the isovector force was increased by 6%.

RPA QTBA QTBA* Exp.
E(MeV) 12.4 11.8 13.4 13.4
Γ (MeV) 2.7 5.3 5.3 4.1
σ (mb) 986 552 544 640

0 5 10 15 20 25 30
E [MeV]

0

200

400

600

800

σ(
E

) 
[m

b]

Fig. 3. E1 photoabsorption cross section in 132Sn. The
dashed line represents the continuum RPA and the full line
the QTBA result. The dashed-dotted line indicates the QTBA
result where the isovector force was increased by 10%. Here we
obtain E = 16.1 MeV and Γ = 4.5 MeV. The dotted line is
the experimental distribution [11].

experimental one. If the continuum is treated exactly the
arbitrariness in the size of the configuration space does
no longer exist. Here the SLy4 parametrization seems to
be best suited for the application of the QTBA under the
present conditions.

0 10 20 30 40
E [MeV]

0

500

1000

1500

σ(
E

) 
[m

b]

Fig. 4. E1 photoabsorption cross section in 208Pb. The dashed
line represents the continuum RPA and the full line the QTBA
result.

4.2 Giant Resonances - the high-lying collective states

The compression of the single-particle spectrum has op-
posite consequences for isoscalar and isovector resonances
within the QTBA [4]. In the isoscalar case the ph-force
has to be weaker compared to the conventional RPA and
for the isovector case the force has to be stronger. In
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Fig. 5. E1 photoabsorption cross section in 208Pb. The full
light line indicates the QTBA result where the isovector force
was increased by 6%. Here we obtain E = 13.4 MeV and
Γ = 5.3 MeV. The dashed dotted line is the experimental
distribution [12].
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Fig. 6. Isoscalar quadrupole strength in 208Pb. The dashed
line represents the continuum RPA and the full line the QTBA
result. The data are indicated by the dotted line.

Fig. 3 the continuum RPA result for the E1 photoabsorp-

Table 8. Giant isoscalar and isovector quadrupole resonance
in 208Pb. The results with and without phonons are compared
with the data. In both cases the single-particle continuum is
treated exactly. The the isoscalar results (0) are from Ref. [13]
and the isovector resonance (1) was measured in 209Bi [14].

isoscalar
RPA QTBA Exp.(0)

E(MeV) 13.04 12.63 11.0(0.2)
Γ (MeV) 2.38 3.30 3.3(0.3)

isovector
RPA QTBA Exp.(1)

E(MeV) 22.2 22.4 22.5(1.0)
Γ (MeV) 4.00 4.78 6.0 (3.0)
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1000

1500
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2 fm
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Fig. 7. Isovector quadrupole strength in 208Pb. The dashed
line represents the continuum RPA and the full line the QTBA
result.

tion cross section in 132Sn (dashed) is compared with the
QTBA result (full line) and the data (dashed-dotted). As
shown in Table 6 the energy calculated in RPA about 2
MeV below the experimental mean energy and the QTBA
2.5 MeV. If we increase the isovector interaction by 10%
(QTBA*) we obtain perfect agreement with the data [11].
The same holds for the width. In Ref. [4] a different config-
uration space and a different number of phonons was used.
The exact continuum influences the QTBA results most
strongly beyond 20 MeV. In Fig.4 and Table 7 the RPA
and QTBA results for 208Pb are shown. As in the case of
132Sn the theoretical cross section agrees excellently with
the data if we slightly increase the isovector the isovector
force as shown in Fig. 5. Finally we also calculated the gi-
ant quadrupole resonances in 208Pb and 132Sn. The results
for 208Pb are shown in Fig. 6 and Fig. 7 and in Table 8 and
that for 132Sn in Fig. 8 and Fig. 9. Our theoretical results
for 208Pb are in fair agreement with the experimental val-
ues. The numbers denoted by QTBA* are calculated with
a slightly (5%) increased isoscalar ph-force. In this spe-
cial case the theoretical values agree nearly quantitatively
with the data.

5 Conclusion

In the present paper we continue the self-consistent inves-
tigation of nuclear structure properties in the frame-work
of a theory which is based on the RPA but considers in a
consistent way the effects of phonons. We concentrated
on the two double magic nuclei 132Sn and 208Pb. Our
model includes in a consistent way 1p1h configurations
and phonons. The major change compared to our previ-
ous paper [4] concerns the exact treatment of the single-
particle continuum. This not only influences the strength
distributions in the continuum but also allows a better def-
inition of the size of the configuration space. For nuclei far
from the stability line the exact treatment will be crucial
for quantitative predictions. Results using a discretized
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Fig. 8. Isoscalar quadrupole strength in 132Sn. The dashed
line represents the continuum RPA and the full line the QTBA
result.
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Fig. 9. Isovector quadrupole strength in 132Sn. The dashed
line represents the continuum RPA and the full line the QTBA
result.

continuum depend on the details of the discretization pre-
scription. We calculated not only low- and high-lying col-
lective states, but investigated in addition the low-lying
non-collective states which represent the major part of the
spectrum. Here we demonstrated the crucial influence of
the phonons by comparing the conventional RPA with the
QTBA. We used the SLy4 parametrization of the Skyrme
ansatz in our calculations, which has been adjusted to the
ground state properties as well as to collective states ob-
tained within the RPA. SLy4 has an effective mass m∗/m
= 0.7. The inclusion of phonons leads to a compression of
the too wide HF single-particle spectrum and improves in
this way appreciably the agreement between theory and
experiment. In this respect our calculation confirms mi-
croscopically the investigations by Mahaux et al. [15] who
discussed the effective mass in nuclei and the influence of
the phonons on the single-particle spectrum. The present
investigation shows that nuclear structure theories have
to treat the excitation spectrum and the separation ener-

gies simultanously. We also showed that with very small
changes in the ph-interaction one can reproduce the data
nearly quantitatively. From this we conclude that a small
renormalization of the SLy4 parametrization may give an
optimal force for self-consistent nuclear structure calcula-
tions which include the phonon degrees of freedom.
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