1,169 research outputs found

    Solid-phase synthesis of recyclable diphosphine ligands

    Get PDF
    The authors thank the European Union (Marie Curie ITN SusPhos, Grant Agreement No. 317404 and COST action PhoSciNet cm08602) for financial support.An efficient solid-phase synthetic approach towards diphosphine ligands is demonstrated. This modular method offers facile access to this important class of ligands, in quantitative yield, providing huge potential for ligand fine-tuning. These supported ligands can be efficiently applied in asymmetric catalysis. Moreover, the immobilized catalysts can successfully be recycled multiple times addressing several synthetic and work-up challenges in the field of catalytic chemistry.PostprintPostprintPeer reviewe

    An introduction to model compounds of lignin linking motifs; synthesis and selection considerations for reactivity studies

    Get PDF
    C.W.L., P.C.J.K. and P.J.D. would like to thank the European Union (Marie Curie ITN “SuBiCat” PITN-GA-2013-607044, C.W.L. also thanks the framework of the Dutch TKI-BBEI project “CALIBRA”, reference TEBE117014. P.C.J.K. also thanks the EPSRC (critical mass grant EP/J018139/ 1). C.S.L. thanks the Leverhulme Trust Early Career Fellowship (ECF‐2018‐480) and the University of St Andrews.The development of fundamentally new valorization strategies for lignin plays a vital role in unlocking the true potential of lignocellulosic biomass as sustainable and economically compatible renewable carbon feedstock. In particular, new catalytic modification and depolymerization strategies are required. Progress in this field, past and future, relies for a large part on the application of synthetic model compounds that reduce the complexity of working with the lignin biopolymer. This aids the development of catalytic methodologies and in-depth mechanistic studies and guides structural characterization studies in the lignin field. However, due to the volume of literature and the piecemeal publication of methodology, the choice of suitable lignin model compounds is far from straight forward, especially for those outside the field and lacking a background in organic synthesis. For example, in catalytic depolymerization studies, a balance between synthetic effort and fidelity compared to the actual lignin of interest needs to be found. In this review, we provide a broad overview of the model compounds available to study the chemistry of the main native linking motifs typically found in lignins from woody biomass, the synthetic routes and effort required to access them, and discuss to what extent these represent actual lignin structures. This overview can aid researchers in their selection of the most suitable lignin model systems for the development of emerging lignin modification and depolymerization technologies, maximizing their chances of successfully developing novel lignin valorization strategies.Publisher PDFPeer reviewe

    Catalytic Activity and Fluxional Behavior of Complexes Based on RuHCl(CO)(PPh<sub>3</sub>)<sub>3</sub> and Xantphos-Type Ligands

    Get PDF
    With RuHCl(CO)(PPh3)3 as the starting material, the complexes RuHCl(CO)(PPh3)(L) were prepared for L = Xantphos and closely related ligands. Their catalytic activity in the direct amination of cyclohexanol showed large differences depending on the different backbone structures. In those complexes the Xantphos-type ligand backbones are slightly bent and display fluxionality, studied by VT-NMR. This was assigned to the "flipping" of the backbone via the bridging atoms in the xanthene backbone. Via line shape analysis of the peaks, the Gibbs free energy of activation of the flipping movement was found to be around 56 kJ/mol in all cases. However, the activation enthalpy and entropy differed considerably. Employing RuCl2(PPh3)3 as the precursor resulted in the trans-coordinated complexes RuCl2(PPh3)(L) for L = Xantphos, Sixantphos. Fluxionality was no longer observed, due to the fact that in these complexes the O atom in the backbone also coordinates to the Ru

    Metal triflates for the production of aromatics from lignin

    Get PDF
    This work was funded by the European Union (Marie Curie ITN ‘SuBiCat’ PITN-GA-2013-607044, PJD, CWL, NJW, PCKL, KB, JGdeV) as well as EP/J018139/1, EP/K00445X/1 grants (NJW and PCJK) and an EPSRC Doctoral Prize Fellowship (CSL).The depolymerization of lignin into valuable aromatic chemicals is one of the key goals towards establishing economically viable biorefineries. In this contribution we present a simple approach for converting lignin to aromatic monomers in high yields, under mild reaction conditions. The methodology relies on the use of catalytic amounts of easy to handle metal triflates (M(OTf)x). Initially, we evaluated the reactivity of a broad range of metal triflates using simple lignin model compounds. More advanced lignin model compounds were also used to study the reactivity of different lignin linkages. The product aromatic monomers were either phenolic C2-acetals obtained by stabilization of the aldehyde cleavage products by reaction with ethylene glycol, or methyl aromatics obtained by catalytic decarbonylation. Notably, when the former method was ultimately tested on lignin, especially Fe(OTf)3 proved very effective and the phenolic C2-acetal products were obtained in an excellent, 19.3±3.2 wt % yield.PostprintPeer reviewe

    Organocatalytic chemoselective primary alcohol oxidation and subsequent cleavage of lignin model compounds and lignin

    Get PDF
    This research was supported by the European Union (Marie Curie ITN “SuBiCat” PITN-GA-2013-607044, S.D.) and by the Distinguished Professorship Program at RWTH Aachen University funded by the Excellence Initiative of the German federal and state governments.A one-pot two-step degradation of lignin ÎČ-O-4 model compounds initiated by preferred oxidation of the primary over the secondary hydroxyl groups with a TEMPO/DAIB system has been developed [TEMPO=2,2,6,6-tetramethylpiperidine-N-oxyl, DAIB=(diacetoxy)iodobenzene]. The oxidised products are then cleaved by proline-catalysed retro-aldol reactions. This degradation methodology produces simple aromatics in good yields from lignin model compounds at room temperature with an extension to organosolv beech-wood lignin ( L1 ) resulting in known cleavage products.PostprintPostprintPeer reviewe
    • 

    corecore