6 research outputs found

    Natural History Of Implantable Cardioverter-Defibrillator Implanted At Or After The Age Of 70 Years In A Veteran Population A Single Center Study

    Get PDF
    Background: The median age of patients in major Implantable Cardioverter-defibrillator (ICD)trials (MUSTT, MADIT-I, MADIT-II, and SCD-HeFT) was 63-67 years; with only 11% ≥70 years. There is little follow-up data on patients over 70 years of age who received an ICD for primary/secondary prevention of sudden cardiac death, particularly for veterans. Objective: The aim of this study was to study the natural history of ICD implantation for veterans over 70 years of age. Methods: We retrospectively reviewed single center ICD data in 216 patients with a mean age at implantation 76 ± 4 years. The ICD indication was primary prevention in 161 patients and secondary prevention in 55 patients. The ICD indication was unavailable in 4 patients. Results: Mean duration of follow up was 1686 ± 1244 days during which 114 (52%) patients died. Of these, 31% died without receiving any appropriate ICD therapy. Overall, 60/216 (28%) received appropriate therapy and 28/216 (13%) received inappropriate therapy. Patients who had ICD implantation for secondary prophylaxis had statistically more (p= 0.02) appropriate therapies compared to patients who had ICD implantation for primary prevention. Indication for implantation and hypertension predicted appropriate therapy, while age at the time of implantation and presence of atrial fibrillation predicted inappropriate therapies. Overall, 7.7% had device related complications. Conclusions: Although 28% septuagenarians in this study received appropriate ICD therapy, they had high rates of mortality, inappropriate therapy, and device complications. ICD implantation in the elderly merits individualized consideration, with higher benefit for secondary prevention

    Circadian variability patterns predict and guide premature ventricular contraction ablation procedural inducibility and outcomes

    Get PDF
    Background Infrequent intraprocedural premature ventricular complexes (PVCs) may impede radiofrequency catheter ablation (RFA) outcome, and pharmacologic induction is unpredictable. Objective The purpose of this study was to determine whether PVC circadian variation could help predict drug response. Methods Consecutive patients referred for RFA with detailed Holter monitoring and frequent monomorphic PVCs were included. Patients were divided into 3 groups based on hourly PVC count relationship to corresponding mean heart rate (HR) during each of the 24 hours on Holter: fast-HR-dependent PVC (F-HR-PVC) type for a positive correlation (Pearson, P <.05), slow-HR-dependent PVC (S-HR-PVC) type for a negative correlation, and independent-HR-PVC (I-HR-PVC) when no correlation was found. Results Fifty-one of the 101 patients (50.5%) had F-HR-PVC, 39.6% I-HR-PVC, and 9.9% S-HR-PVC; 30.7% had infrequent intraprocedural PVC requiring drug infusion. The best predictor of infrequent PVC was number of hours with PVC count <120/h on Holter (area under the curve 0.80, sensitivity 83.9%, specificity 74.3%, for ≥2 h). Only F-HR-PVC patients responded to isoproterenol. Isoproterenol washout or phenylephrine infusion was successful for the 3 S-HR-PVC patients, and no drug could increase PVC frequency in the 12 I-HR-PVC patients. Long-term RFA success rate in patients with frequent PVCs at baseline (82.9%) was similar to those with infrequent PVC who responded to a drug (77.8%; P = .732) but significantly higher than for those who did not respond to any drug (15.4%; P <.0001). Conclusion A simple analysis of Holter PVC circadian variability provides incremental value to guide pharmacologic induction of PVCs during RFA and predict outcome. Patients with infrequent I-HR-PVC had the least successful outcomes from RF ablation

    Molecular genetic mechanisms of allelic specific regulation of murine Comt expression

    No full text
    A functional allele of the mouse catechol-O-methyltransferase (Comt) gene is defined by the insertion of a B2 short interspersed repeat element in its 3′-untranslated region (UTR). This allele has been associated with a number of phenotypes, such as pain and anxiety. In comparison with mice carrying the ancestral allele (Comt(+)), Comt(B2i) mice show higher Comt mRNA and enzymatic activity levels. Here, we investigated the molecular genetic mechanisms underlying this allelic specific regulation of Comt expression. Insertion of the B2 element introduces an early polyadenylation signal generating a shorter Comt transcript, in addition to the longer ancestral mRNA. Comparative analysis and in silico prediction of Comt mRNA potential targets within the transcript 3′ to the B2 element was performed and allowed choosing microRNA (miRNA) candidates for experimental screening: mmu-miR-3470a, mmu-miR-3470b, and mmu-miR-667. Cell transfection with each miRNA downregulated the expression of the ancestral transcript and COMT enzymatic activity. Our in vivo experiments showed that mmu-miR-667-3p is strongly correlated with decreasing amounts of Comt mRNA in the brain, and lentiviral injections of mmu-miR-3470a, mmu-miR-3470b, and mmu-miR-667 increase hypersensitivity in the mouse formalin model, consistent with reduced COMT activity. In summary, our data demonstrate that the Comt(+) transcript contains regulatory miRNA signals in its 3′-untranslated region leading to mRNA degradation; these signals, however, are absent in the shorter transcript, resulting in higher mRNA expression and activity levels

    Mechanisms of Reactions Induced by Photocatalysis of Titanium Dioxide Nanoparticles

    No full text
    corecore