8 research outputs found
Genomic diversity of novel strains of mammalian gut microbiome derived Clostridium XIVa strains is driven by mobile genetic element acquisition
Despite advances in sequencing technologies that enable a greater understanding of mammalian gut microbiome composition, our ability to determine a role for individual strains is hampered by our inability to isolate, culture and study such microbes. Here we describe highly unusual Clostridium XIVa group strains isolated from the murine gut. Genome sequencing indicates that these strains, Clostridium symbiosum LM19B and LM19R and Clostridium clostridioforme LM41 and LM42, have significantly larger genomes than most closely related strains. Genomic evidence indicates that the isolated LM41 and LM42 strains diverge from most other Clostridium XIVa strains and supports reassignment of these groups at genus-level. We attribute increased C. clostridioforme LM41 and LM42 genome size to acquisition of mobile genetic elements including dozens of prophages, integrative elements, putative group II introns and numerous transposons including 29 identical copies of the IS66 transposase, and a very large 192 Kb plasmid. antiSmash analysis determines a greater number of biosynthetic gene clusters within LM41 and LM42 than in related strains, encoding a diverse array of potential novel antimicrobial compounds. Together these strains highlight the potential untapped microbial diversity that remains to be discovered within the gut microbiome and indicate that, despite our ability to get a top down view of microbial diversity, we remain significantly blinded to microbe capabilities at the strain level
Microbiome-derived carnitine mimics as previously unknown mediators of gut-brain axis communication
Alterations to the gut microbiome are associated with various neurological diseases, yet evidence of causality and identity of microbiome-derived compounds that mediate gut-brain axis interaction remain elusive. Here, we identify two previously unknown bacterial metabolites 3-methyl-4-(trimethylammonio)butanoate and 4-(trimethylammonio)pentanoate, structural analogs of carnitine that are present in both gut and brain of specific pathogen–free mice but absent in germ-free mice. We demonstrate that these compounds are produced by anaerobic commensal bacteria from the family Lachnospiraceae (Clostridiales) family, colocalize with carnitine in brain white matter, and inhibit carnitine-mediated fatty acid oxidation in a murine cell culture model of central nervous system white matter. This is the first description of direct molecular inter-kingdom exchange between gut prokaryotes and mammalian brain cells, leading to inhibition of brain cell function
Microbiome-derived carnitine mimics as previously unknown mediators of gut-brain axis communication
Alterations to the gut microbiome are associated with various neurological diseases, yet evidence of causality and identity of microbiome-derived compounds that mediate gut-brain axis interaction remain elusive. Here, we identify two previously unknown bacterial metabolites 3-methyl-4-(trimethylammonio)butanoate and 4-(trimethylammonio)pentanoate, structural analogs of carnitine that are present in both gut and brain of specific pathogen-free mice but absent in germ-free mice. We demonstrate that these compounds are produced by anaerobic commensal bacteria from the family Lachnospiraceae (Clostridiales) family, colocalize with carnitine in brain white matter, and inhibit carnitine-mediated fatty acid oxidation in a murine cell culture model of central nervous system white matter. This is the first description of direct molecular inter-kingdom exchange between gut prokaryotes and mammalian brain cells, leading to inhibition of brain cell function.Additional co-authors: Emily K. Osterweil, Andrew S. MacDonald, Chris J. Schofield, Saverio Tardito, Josephine Bunch, Gillian Douce, Julia M. Edgar, RuAngelie Edrada-Ebel, Richard J. A. Goodwin, Richard Burchmore, Daniel M. Wal
Rapid in-country sequencing of whole virus genomes to inform rabies elimination programmes.
Genomic surveillance is an important aspect of contemporary disease management but has yet to be used routinely to monitor endemic disease transmission and control in low- and middle-income countries. Rabies is an almost invariably fatal viral disease that causes a large public health and economic burden in Asia and Africa, despite being entirely vaccine preventable. With policy efforts now directed towards achieving a global goal of zero dog-mediated human rabies deaths by 2030, establishing effective surveillance tools is critical. Genomic data can provide important and unique insights into rabies spread and persistence that can direct control efforts. However, capacity for genomic research in low- and middle-income countries is held back by limited laboratory infrastructure, cost, supply chains and other logistical challenges. Here we present and validate an end-to-end workflow to facilitate affordable whole genome sequencing for rabies surveillance utilising nanopore technology. We used this workflow in Kenya, Tanzania and the Philippines to generate rabies virus genomes in two to three days, reducing costs to approximately £60 per genome. This is over half the cost of metagenomic sequencing previously conducted for Tanzanian samples, which involved exporting samples to the UK and a three- to six-month lag time. Ongoing optimization of workflows are likely to reduce these costs further. We also present tools to support routine whole genome sequencing and interpretation for genomic surveillance. Moreover, combined with training workshops to empower scientists in-country, we show that local sequencing capacity can be readily established and sustainable, negating the common misperception that cutting-edge genomic research can only be conducted in high resource laboratories. More generally, we argue that the capacity to harness genomic data is a game-changer for endemic disease surveillance and should precipitate a new wave of researchers from low- and middle-income countries
Characterisation of novel Clostridium strains isolated from the murine Fmr1 knockout microbiome
Abstract not currently available
Microbiome-derived carnitine mimics as previously unknown mediators of gut-brain axis communication
Alterations to the gut microbiome are associated with various neurological diseases, yet evidence of causality and identity of microbiome-derived compounds that mediate gut-brain axis interaction remain elusive. Here, we identify two previously unknown bacterial metabolites 3-methyl-4-(trimethylammonio)butanoate and 4-(trimethylammonio)pentanoate, structural analogs of carnitine that are present in both gut and brain of specific pathogen-free mice but absent in germ-free mice. We demonstrate that these compounds are produced by anaerobic commensal bacteria from the family Lachnospiraceae (Clostridiales) family, colocalize with carnitine in brain white matter, and inhibit carnitine-mediated fatty acid oxidation in a murine cell culture model of central nervous system white matter. This is the first description of direct molecular inter-kingdom exchange between gut prokaryotes and mammalian brain cells, leading to inhibition of brain cell function.</p