15 research outputs found

    Low-dimensional perovskite nanoplatelet synthesis using in situ photophysical monitoring to establish controlled growth.

    Get PDF
    Perovskite nanoparticles have attracted the attention of research groups around the world for their impressive photophysical properties, facile synthesis and versatile surface chemistry. Here, we report a synthetic route that takes advantage of a suite of soluble precursors to generate CsPbBr3 perovskite nanoplatelets with fine control over size, thickness and optical properties. We demonstrate near unit cell precision, creating well characterized materials with sharp, narrow emission lines at 430, 460 and 490 nm corresponding to nanoplatelets that are 2, 4, and 6 unit cells thick, respectively. Nanoplatelets were characterized with optical spectroscopy, atomic force microscopy, scanning electron microscopy and transmission electron microscopy to explicitly correlate growth conditions, thickness and resulting photophysical properties. Detailed in situ photoluminescence spectroscopic studies were carried out to understand and optimize particle growth by correlating light emission with nanoplatelet growth across a range of synthetic conditions. It was found that nanoplatelet thickness and emission wavelength increase as the ratio of oleic acid to oleyl amine or the reaction temperature is increased. Using this information, we control the lateral size, width and corresponding emission wavelength of the desired nanoplatelets by modulating the temperature and ratios of the ligand

    Engineering gold-platinum core-shell nanoparticles by self-limitation in solution

    No full text
    Core-shell particles with thin noble metal shells represent an attractive material class with potential for various applications ranging from catalysis to biomedical and pharmaceutical applications to optical crystals. The synthesis of well-defined core-shell architectures remains, however, highly challenging. Here, we demonstrate that atomically-thin and homogeneous platinum shells can be grown via a colloidal synthesis method on a variety of gold nanostructures ranging from spherical nanoparticles to nanorods and nanocubes. The synthesis is based on the exchange of low binding citrate ligands on gold, the reduction of platinum and the subsequent kinetically hindered growth by carbon monoxide as strong binding ligand. The prerequisites for homogeneous growth are low core-binding ligands with moderate fast ligand exchange in solution, a mild reducing agent to mitigate homonucleation and a strong affinity of a second ligand system that can bind to the shell’s surface. The simplicity of the described synthetic route can potentially be adapted to various other material libraries to obtain atomically smooth core-shell systems

    Engineering gold-platinum core-shell nanoparticles by self-limitation in solution

    Get PDF
    Core-shell particles with thin noble metal shells represent an attractive material class with potential for various applications ranging from catalysis to biomedical and pharmaceutical applications to optical crystals. The synthesis of well-defined core-shell architectures remains, however, highly challenging. Here, we demonstrate that atomically-thin and homogeneous platinum shells can be grown via a colloidal synthesis method on a variety of gold nanostructures ranging from spherical nanoparticles to nanorods and nanocubes. The synthesis is based on the exchange of low binding citrate ligands on gold, the reduction of platinum and the subsequent kinetically hindered growth by carbon monoxide as strong binding ligand. The prerequisites for homogeneous growth are low core-binding ligands with moderate fast ligand exchange in solution, a mild reducing agent to mitigate homonucleation and a strong affinity of a second ligand system that can bind to the shell's surface. The simplicity of the described synthetic route can potentially be adapted to various other material libraries to obtain atomically smooth core-shell systems. Core-shell particles with thin noble metal shells represent an attractive material class with potential for various applications ranging from catalysis to biomedical applications, but the synthesis of well-defined core-shell architectures remains highly challenging. Here, the authors report the chemically induced self-limiting growth of atomically-thin and homogeneous platinum shells on a variety of gold nanostructures

    Low-dimensional perovskite nanoplatelet synthesis using in situ photophysical monitoring to establish controlled growth

    No full text
    Perovskite nanoparticles have attracted the attention of research groups around the world for their impressive photophysical properties, facile synthesis and versatile surface chemistry. Here, we report a synthetic route that takes advantage of a suite of soluble precursors to generate CsPbBr3 perovskite nanoplatelets with fine control over size, thickness and optical properties. We demonstrate near unit cell precision, creating well characterized materials with sharp, narrow emission lines at 430, 460 and 490 nm corresponding to nanoplatelets that are 2, 4, and 6 unit cells thick, respectively. Nanoplatelets were characterized with optical spectroscopy, atomic force microscopy, scanning electron microscopy and transmission electron microscopy to explicitly correlate growth conditions, thickness and resulting photophysical properties. Detailed in situ photoluminescence spectroscopic studies were carried out to understand and optimize particle growth by correlating light emission with nanoplatelet growth across a range of synthetic conditions. It was found that nanoplatelet thickness and emission wavelength increase as the ratio of oleic acid to oleyl amine or the reaction temperature is increased. Using this information, we control the lateral size, width and corresponding emission wavelength of the desired nanoplatelets by modulating the temperature and ratios of the ligand
    corecore