16 research outputs found

    Electric Field Analysis of HDPE/NR Biocomposite Due to Moisture Content Condition

    Get PDF
    It is critical to develop new insulating materials that can improve the performance of next-generation high-voltage cables used in the construction of future electrical networks. The high electric field reduces solid insulation resistance and causes partial discharge through imperfections in a dielectric, causing the dielectric to age and eventually fail. Moisture is one of the most serious factors the effect the high voltage insulation status of High-Density Polyethylene (HDPE) composites. The main goal of this project is to investigate the electric field intensity of HDPE due to moisture content condition when mixed with 10g, 20g, and 30g of various bio-fillers such as coconut coir fibre, pineapple leaves fibre, and oil palm empty fruit bunch. This can be accomplished by using the Finite Element Method Magnetics (FEMM) 4.2 software to create a two-dimensional (2D) axisymmetric electrostatic model. When compared to unfilled HDPE, the inclusion of bio-filler in HDPE increased the maximum electric field intensity due to moisture content condition. The intensity of the electric field varied with the different percentages of biocomposite loading and their permittivity due to moisture content condition. The results showed, due to moisture content condition, the maximum electric field intensity was significantly lower when HDPE was added with a 10% loading of the oil palm empty fruit bunch (EFB). As a result, EFB bio-filler was the best composition because it tends to improve dielectric properties by having a lower maximum electric field intensity which is 4.214Mv/m due to moisture content condition at the top sphere electrode when compared to other compositions

    Characteristics of grounding performance at Taman Bukit Perdana

    Get PDF
    Grounding system is one of the important part during installation of power systems. The function of grounding system is to enable protection to the power system in case of any current leakage or lightning strike. A grounding system will disconnect the circuit as soon as the fault current flows through the earth [1]. Every potential connection or equipment that may cause the current leakage must be grounded. In a simple way, it can be defined as the system to protect and stabilize the operation for human and equipment during fault conditions

    Smart distribution board overload detector by using microcontroller

    Get PDF
    A statistic by Economic Planning Unit (EPU) on the electricity growth in Malaysia has shown an increment in line with economic growth [1]. In line with government policies, the energy supply industry has been molding itself to cater to the rapid development of the nation in hopes of creating a better and smarter nation [2]. There are many developments and implementation of smart energy consumption to save energy and cater to future energy challenges

    Space charges analysis on insulator with uniform layer contamination effect

    Get PDF
    High voltage direct current (HVDC) transmission provides an attractive alternative for bulk power transfer. However, HVDC transmission may have loss about half per unit length of high voltage alternating current (HVAC) at the same amount of power carried. This is due to the space charge formation around the conductor in HVDC cables. It is known that the presence of space charge inside an insulator may distort the local electric field and surface energy. This paper investigates the effect of electrostatics for space charge, electric field and surface energy in the HVDC cable in clean and contaminated conditions. The effect of uniform layer contamination from oil, sandstone and fresh water was conducted on 11 kV XLPE cable using finite element software under electrostatics study. The contamination layer was created around the XLPE cable by multifarious the radius of layer contamination from the conductor. The simulation results show that enlargement of contamination layer radius by 1.0 mm (light), 1.5 mm (medium) and 2.0 mm (heavy) resulted in the reduction of surface energy by 20% and electric field by 22% but increase the space charge amplitude by 76%. The study also found that fresh water can be considered as the worst contamination compared to oil and sandstone

    Application of PDC analysis to identify effect of electrical tracking on conductivity of LLDPE-NR nanocomposite

    Get PDF
    Polymeric nanocomposites are widely used for high voltage outdoor insulating application due to their good electrical performance. Recently, SiO2, TiO2 and MMT nanofillers are being used as filler because there are listed as main nanofiller commonly used in electrical engineering. Natural rubber (NR) was used because the nature of the interphase is found to affect viscoelasticity and it develops several interphases with the Linear Low-Density Polyethylene (LLDPE) matrix. One of the problems associated with outdoor polymeric insulators is tracking of the surface which can directly influence the reliability of the insulator. This paper presents the outcome of an experimental study to determine the conductivity level of the LLDPE-NR compound, filled with different amount of SiO2, TiO2 and MMT nanofiller using Polarization and Depolarization Current (PDC) measurement technique. LLDPE and NR with the ratio composition of 80:20 were selected as a base polymer. Results show that different compositions as well as the surface physical conditions affect the PDC measurement result

    Collapsibility behaviour of ABS P400 and PMMA used as sacrificial pattern in direct investment casting process

    Get PDF
    The feasibility of the Investment Casting (IC) process has been choose to be vital route in producing the metal alloy products. However, less report regarding the feasibility of portable Additive Manufacturing (AM) machines to be employed in casting process. Sacrificial wax pattern in casting process has been substitute with the AM material due to its brittleness and higher cost for hard tooling. Due to this constrain, the quality of fabricated AM materials, collapsibility analysis and strain induce was investigated. The patterns were made using ABS P400 and PMMA materials by two different types of technique which are Fused Filament Fabrication (FFF) and Polyjet technique. There were three different types of internal structures which are hollow, square and hexagon patterns. The thermal properties of the materials were studied by thermogravimetry analyzer (TGA) and linear thermal expansion. The collapsibility screening was determined to investigate the behavior of the patterns underneath the expansion. Apparently, patterns made by Polyjet technique shows better accuracy compare to FFF technique. It shows that, the PMMA error lies between -2.2 % until -0.63 % compared to ABS which is -2.4 % until 1.2% for hollow, square and hexagon patterns respectively. The data of the surface roughness were varies whereas internal structures does not play significant role in improving the surface roughness. From the strain analysis, it can be suggested that hexagon internal structure yield less stress compare to square patterns. In terms of collapsibility, hollow and hexagon patterns yield most successful warping whereas it indicates the patterns able to collapse underneath the expansion. Moreover, PMMA material tends to gain higher strain compared to ABS material whereas this can be illustrated by the graph of linear expansion. Nevertheless, to overcome the cracking of ceramic shell due to higher thermal expansion, different build layer thickness was adopted to overcome the issue

    Breakdown Characteristics of Unused Transformer Oil and Olive Oil under AC and DC Voltages at Different Temperature Rate

    Get PDF
    This project aim is to investigate the breakdown characteristics of unused transformer oil and olive oil under AC and DC voltage at different temperature rate. HVAC and HVDC breakdown tests are carried out alongside with the hemisphere electrode arrangements. The high voltage test is done in order to observe the performances of the oil samples to attain the highest breakdown AC and DC voltages. In addition, this project needs to be done to see if olive oil as one of the vegetable oil can be an alternative for the conventional transformer oil. Commonly used transformer oil is made from mineral oil and it is declining day by day as its use increases. So as a precaution studies are done with vegetable oils to replace the mineral oil-based transformer insulation fluid. In this study, each oil sample is tested at different temperature rate and has recorded different value of breakdown voltage from the experiment. The gap distance between electrodes is constant and oil samples are heated at different temperature ranges. More voltage is needed to breakdown at higher temperature rate. Both the unused transformer oil and olive oil have linearly increased AC and DC breakdown voltages when subjected to higher temperatures. However, it is found that the highest AC and DC breakdown voltages are recorded at the highest temperature range and when the insulating medium used is olive oil. Moreover, the obtained AC and DC voltages are then be used to study the electric field in FEMM softwar

    Electric Field Characteristics of HDPE-NR Biocomposite Under Breakdown Condition

    Get PDF
    It is critical to develop new insulating materials that can improve the performance of next generation high voltage cables for creating future electrical networks. The high electric field reduces the resistance of solid insulation and produces partial discharge through imperfections in a dielectric, causing the dielectric to age and eventually fail. Thus, this project seeks to analyse the electric field intensity of High Density Polyethylene (HDPE) in breakdown condition when added with 10g, 20g and 30g of different types of bio-filler such as coconut coir fibre, pineapple leaves fibre, and oil palm empty fruit bunch. This can be achieved by creating a two-dimensional (2D) axisymmetric electrostatic model by using the Finite Element Method Magnetics (FEMM) 4.2 software. The results showed that the unfilled HDPE biocomposites have a higher electric field intensity than 10g, 20g, and 30g biocomposite. This indicates that the maximum electric field intensity changes according to the permittivity and voltage of the bio-filler under breakdown conditions. As a result, the maximum electric field intensity was much lower for HDPE added with a 20g of the pineapple leaves fibre. Hence, pineapple leaves fibre was the best composition as it tends to improve the dielectric properties since it has a lower electric field intensity at the top electrode as compared to other compositions

    Electric Field Characteristics of HDPE-NR Biocomposite Under Breakdown Condition

    Get PDF
    It is critical to develop new insulating materials that can improve the performance of next generation high voltage cables for creating future electrical networks. The high electric field reduces the resistance of solid insulation and produces partial discharge through imperfections in a dielectric, causing the dielectric to age and eventually fail. Thus, this project seeks to analyse the electric field intensity of High Density Polyethylene (HDPE) in breakdown condition when added with 10g, 20g and 30g of different types of bio-filler such as coconut coir fibre, pineapple leaves fibre, and oil palm empty fruit bunch. This can be achieved by creating a two-dimensional (2D) axisymmetric electrostatic model by using the Finite Element Method Magnetics (FEMM) 4.2 software. The results showed that the unfilled HDPE biocomposites have a higher electric field intensity than 10g, 20g, and 30g biocomposite. This indicates that the maximum electric field intensity changes according to the permittivity and voltage of the bio-filler under breakdown conditions. As a result, the maximum electric field intensity was much lower for HDPE added with a 20g of the pineapple leaves fibre. Hence, pineapple leaves fibre was the best composition as it tends to improve the dielectric properties since it has a lower electric field intensity at the top electrode as compared to other compositions

    Economical Electricity Home System using Solar

    Get PDF
    Economical home system can be defined as one realization of home that have a cost-effective ideal by using specific set of technologies combined with the renewable energy as a power supply. This system has a highly advance for lighting, temperature control, socket and own power supply by using solar panel. This system is developed in this project and focused on B40 community that represents the bottom 40% of income earners and also this project becomes suitable for this community for getting an energy efficiency system. Due to the COVID-19, B40 households were reported to have lost their jobs causing financial hardship and had to face the issue of high electricity bills which are very burdensome for them at all in order to pay the cost electricity for monthly. The aim of the article is to design and simulate the solar power system including battery storage in suitable software for a residential house especially in B40 community home and also to analyze the potential of battery storage in order to store the energy from solar panel. Therefore, the economical electricity home system using solar energy for B40 community is proposed in this project for producing an energy efficient system at home. In addition, an electrical floor plan and floor plan of B40 community home is designed in the SketchUp software that using basic electrical equipment such as lighting, ceiling fan and socket. The system is developed by using the MATLAB software in order to produce the result of energy efficiency by using the renewable energy which is solar system and also battery storage. According to the data produced from the calculation of old bills and new bills, the energy consumptions are calculated and also be compared before and after using the renewable energy which is using solar system. The data obtained through calculation of maximum demand in new bill is used in the simulation of solar system in MATLAB software. The results obtained show that after using an energy-efficient load, the monthly new bill is around RM 27.79 which is around RM 10.75 less than the monthly old bill before using an energy-efficient load. It can be concluded that the use of renewable energy in B40 community home can save the energy and also money
    corecore