9 research outputs found

    Development of Bioinformatics Infrastructure for Genomics Research:

    Get PDF
    Although pockets of bioinformatics excellence have developed in Africa, generally, large-scale genomic data analysis has been limited by the availability of expertise and infrastructure. H3ABioNet, a pan-African bioinformatics network, was established to build capacity specifically to enable H3Africa (Human Heredity and Health in Africa) researchers to analyze their data in Africa. Since the inception of the H3Africa initiative, H3ABioNet's role has evolved in response to changing needs from the consortium and the African bioinformatics community

    African Genomic Medicine Portal: A Web Portal for Biomedical Applications

    Get PDF
    Genomics data are currently being produced at unprecedented rates, resulting in increased knowledge discovery and submission to public data repositories. Despite these advances, genomic information on African-ancestry populations remains significantly low compared with European- and Asian-ancestry populations. This information is typically segmented across several different biomedical data repositories, which often lack sufficient fine-grained structure and annotation to account for the diversity of African populations, leading to many challenges related to the retrieval, representation and findability of such information. To overcome these challenges, we developed the African Genomic Medicine Portal (AGMP), a database that contains metadata on genomic medicine studies conducted on African-ancestry populations. The metadata is curated from two public databases related to genomic medicine, PharmGKB and DisGeNET. The metadata retrieved from these source databases were limited to genomic variants that were associated with disease aetiology or treatment in the context of African-ancestry populations. Over 2000 variants relevant to populations of African ancestry were retrieved. Subsequently, domain experts curated and annotated additional information associated with the studies that reported the variants, including geographical origin, ethnolinguistic group, level of association significance and other relevant study information, such as study design and sample size, where available. The AGMP functions as a dedicated resource through which to access African-specific information on genomics as applied to health research, through querying variants, genes, diseases and drugs. The portal and its corresponding technical documentation, implementation code and content are publicly available

    African Genomic Medicine Portal: A Web Portal for Biomedical Applications

    Get PDF
    Genomics data are currently being produced at unprecedented rates, resulting in increased knowledge discovery and submission to public data repositories. Despite these advances, genomic information on African-ancestry populations remains significantly low compared with European- and Asian-ancestry populations. This information is typically segmented across several different biomedical data repositories, which often lack sufficient fine-grained structure and annotation to account for the diversity of African populations, leading to many challenges related to the retrieval, representation and findability of such information. To overcome these challenges, we developed the African Genomic Medicine Portal (AGMP), a database that contains metadata on genomic medicine studies conducted on African-ancestry populations. The metadata is curated from two public databases related to genomic medicine, PharmGKB and DisGeNET. The metadata retrieved from these source databases were limited to genomic variants that were associated with disease aetiology or treatment in the context of African-ancestry populations. Over 2000 variants relevant to populations of African ancestry were retrieved. Subsequently, domain experts curated and annotated additional information associated with the studies that reported the variants, including geographical origin, ethnolinguistic group, level of association significance and other relevant study information, such as study design and sample size, where available. The AGMP functions as a dedicated resource through which to access African-specific information on genomics as applied to health research, through querying variants, genes, diseases and drugs. The portal and its corresponding technical documentation, implementation code and content are publicly available

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Evaluation of the immune response in patients with chronic HCV infection

    No full text
    No Abstract. The Egyptian Journal of Biochemistry and Molecular Biology Vol. 22(2) 2004: 41-5

    BIOCHEMICAL STUDIES OF HIPPOCAMPAL GENE EXPRESSION OF BRAIN-DERIVED NEUROTROPIC FACTOR AND TOLL-LIKE RECEPTOR-4 IN DIABETIC RATS EXPOSED TO CHRONIC STRESS: EFFECTS OF ANTIDEPRESSANT DRUGS

    No full text
      Objective: Depression and diabetes are closely associated in a reciprocal manner, leading to significant morbidity and mortality with an evidence of a pro-inflammatory state underlying pathophysiology of both diseases. Unfortunately, little information is available about the effects of antidepressant drugs on hippocampal brain-derived neurotrophic factor (BDNF) and toll-like receptor-4 (TLR-4) expression in diabetes.Methods: We investigated the effect of chronic administration of fluoxetine (FLU) and imipramine (IMIP) on behavioral, metabolic, and inflammatory abnormalities in diabetic and non-diabetic rats exposed to chronic restraint stress (CRS).Results: Both diabetes and CRS induced depressive-like behavior which was more prominent in diabetic/depressed rats; this was reversed by chronic treatment with FLU and IMIP. Diabetic and non-diabetic rats exposed to CRS showed a significant increase in hippocampal expression of TLR-4 and pro-inflammatory cytokines alongside a decrease in BDNF expression. FLU and IMIP ameliorated these inflammatory abnormalities.Conclusion: Diabetes mellitus (DM) and chronic stress induced a depressive-like behavior associated with an increase in hippocampal expression of TLR-4, tumor necrosis factor-α, and interleukin-1Ãƞ with a significant correlation to decreased BDNF expression. FLU and IMIP showed comparable effects regards the improvement of depressive and inflammatory abnormalities associated with DM

    African Genomic Medicine Training Initiative (AGMT)

    No full text
    The aim of this Professional Development Course was to provide genomics and genetics education to Nurses, Medical Doctors and Pathologists/Medical Laboratory Scientists & Technicians based in Africa. This course was provided free of charge - there was no cost associated with hosting a classroom for AGMT_2022. Further, attendance for participants and volunteer staff must be completely free-of-charge. If classrooms have running costs, they need to find alternate ways to cover these costs.  AGMT was launched in May 2016, in Senegal, by a group of stakeholders from the H3Africa Consortium and the AfSHG. AGMT course has successfully delivered a genomic medicine course to Nurses in 2017 and 2019. The 2022 iteration will deliver a genomic medicine course not only to Nurses but to Medical Doctors, Pathologists/Medical Laboratory Scientists and Technicians. There is a continuous need for genomic medicine across Africa from various health professionals. AGMT is working towards meeting this demand and accommodating different health professionals in addition to the group that it is currently accommodating.  The 1st AGMT iteration was run in 2017 with 19 classrooms in 11 countries, 1 online class, 225 students registered! The 2nd iteration was run in 2019 with 22 classrooms in 13 countries, 1 online class, 294 students registered. The 3rd iteration was run in 2022 with 24 classrooms (1 face-to-face, 3 blended and 20 online) in 11 countries and more than 800 participants with 261 students officially passing the course.</p

    Research capacity. Enabling the genomic revolution in Africa.

    No full text
    no availabl
    corecore