11 research outputs found

    Generalized biomolecular modeling and design with RoseTTAFold All-Atom

    Get PDF
    Deep learning methods have revolutionized protein structure prediction and design but are currently limited to protein-only systems. We describe RoseTTAFold All-Atom (RFAA) which combines a residue-based representation of amino acids and DNA bases with an atomic representation of all other groups to model assemblies containing proteins, nucleic acids, small molecules, metals, and covalent modifications given their sequences and chemical structures. By fine tuning on denoising tasks we obtain RFdiffusionAA, which builds protein structures around small molecules. Starting from random distributions of amino acid residues surrounding target small molecules, we design and experimentally validate, through crystallography and binding measurements, proteins that bind the cardiac disease therapeutic digoxigenin, the enzymatic cofactor heme, and the light harvesting molecule bilin

    Mild and selective base-free C–H arylation of heteroarenes: experiment and computation

    Get PDF
    A mild and selective C–H arylation strategy for indoles, benzofurans and benzothiophenes is described. The arylation method engages aryldiazonium salts as arylating reagents in equimolar amounts. The protocol is operationally simple, base free, moisture tolerant and air tolerant. It utilizes low palladium loadings (0.5 to 2.0 mol% Pd), short reaction times, green solvents (EtOAc/2-MeTHF or MeOH) and is carried out at room temperature, providing a broad substrate scope (47 examples) and excellent selectivity (C-2 arylation for indoles and benzofurans, C-3 arylation for benzothiophenes). Mechanistic experiments and DFT calculations support a Heck–Matsuda type coupling mechanism.Hannes P.L. Gemoets, Indrek Kalvet, Alexander V. Nyuchev, Nico Erdmann, Volker Hessel, Franziska Schoenebeck and Timothy NoĂ«

    Mild and selective base-free C–H arylation of heteroarenes:experiment and computation

    No full text
    A mild and selective C–H arylation strategy for indoles, benzofurans and benzothiophenes is described. The arylation method engages aryldiazonium salts as arylating reagents in equimolar amounts. The protocol is operationally simple, base free, moisture tolerant and air tolerant. It utilizes low palladium loadings (0.5 to 2.0 mol% Pd), short reaction times, green solvents (EtOAc/2-MeTHF or MeOH) and is carried out at room temperature, providing a broad substrate scope (47 examples) and excellent selectivity (C-2 arylation for indoles and benzofurans, C-3 arylation for benzothiophenes). Mechanistic experiments and DFT calculations support a Heck–Matsuda type coupling mechanism

    Improving Protein Expression, Stability, and Function with ProteinMPNN

    No full text
    Natural proteins are highly optimized for function but are often difficult to produce at a scale suitable for biotechnological applications due to poor expression in heterologous systems, limited solubility, and sensitivity to temperature. Thus, a general method that improves the physical properties of native proteins while maintaining function could have wide utility for protein-based technologies. Here, we show that the deep neural network ProteinMPNN, together with evolutionary and structural information, provides a route to increasing protein expression, stability, and function. For both myoglobin and tobacco etch virus (TEV) protease, we generated designs with improved expression, elevated melting temperatures, and improved function. For TEV protease, we identified multiple designs with improved catalytic activity as compared to the parent sequence and previously reported TEV variants. Our approach should be broadly useful for improving the expression, stability, and function of biotechnologically important proteins

    Improving Protein Expression, Stability, and Function with ProteinMPNN

    No full text
    Natural proteins are highly optimized for function but are often difficult to produce at a scale suitable for biotechnological applications due to poor expression in heterologous systems, limited solubility, and sensitivity to temperature. Thus, a general method that improves the physical properties of native proteins while maintaining function could have wide utility for protein-based technologies. Here, we show that the deep neural network ProteinMPNN, together with evolutionary and structural information, provides a route to increasing protein expression, stability, and function. For both myoglobin and tobacco etch virus (TEV) protease, we generated designs with improved expression, elevated melting temperatures, and improved function. For TEV protease, we identified multiple designs with improved catalytic activity as compared to the parent sequence and previously reported TEV variants. Our approach should be broadly useful for improving the expression, stability, and function of biotechnologically important proteins
    corecore