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One sentence summary: The authors develop a deep learning method for prediction and 
design of complexes of proteins, small molecules, and nucleic acids. 

Abstract: 

Deep learning methods have revolutionized protein structure prediction and design, but are 
currently limited to protein only systems. We describe RoseTTAFold All-Atom (RFAA) which 
combines a residue based representation of amino acids and DNA bases with an atomic 
representation of all other groups to model assemblies containing  proteins, nucleic acids, small 
molecules, metals, and covalent modifications given their sequences and chemical structures.   
By finetuning on denoising tasks we obtain RFdiffusionAA, which  builds protein structures 
around small molecules. Starting from random distributions of amino acid residues surrounding 
target small molecules, we design and experimentally validate, through crystallography and 
binding measurements, proteins that bind the cardiac disease therapeutic digoxigenin, the 
enzymatic cofactor heme, and the light harvesting molecule bilin. 

Main Text: 

The deep neural networks AlphaFold2 (AF2)(1) and RoseTTAFold (RF)(2) enable high-
accuracy prediction of protein structures from amino acid sequence. However, in nature, proteins 
rarely act alone; they form complexes with other proteins in cell signaling, interact with DNA 
and RNA during transcription and translation, and interact with small molecules both covalently 
and noncovalently during metabolism. Modeling such general biomolecular assemblies 
composed of polypeptide chains, covalently modified amino acids, nucleic acid chains, and 
arbitrary small molecules remains an outstanding challenge. One approach is to model the 
protein chains using AF2 or RF, and then successively add in the non-protein components using 
classical docking methods(3–9); however, systematically evaluating and optimizing such 
procedures is not straightforward. RF has been extended to model both protein and nucleic acids 
by increasing the size of the residue alphabet to 28 (20 amino acids, four DNA bases, and four 
RNA bases) with RoseTTAFold nucleic acid (RFNA)(10), but general biomolecular system 
modeling is a more challenging problem given the great diversity of possible small molecule 
components. An approach capable of accurately predicting the three-dimensional structures of 
biomolecular assemblies starting only from knowledge of the constituent molecules (and not 
their 3D structures) would have broad impact on structural biology and drug discovery, and open 
the door to deep learning-based design of protein-small molecule assemblies. 
  
We set out to develop a structure prediction method capable of generating 3D coordinates for all 
atoms of a biological unit, including proteins, nucleic acids, small molecules, metals, and 
chemical modifications (Figure 1A). The first obstacle we faced in taking on the broader 
challenge of generalized biomolecular system modeling was how to represent the components. 
Existing protein structure prediction networks represent proteins as linear chains of amino acids, 
and this representation can be readily extended to nucleic acids. However, many of the small 
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molecules that proteins interact with are not polymers, and it is unclear how to model them as a 
linear sequence. A natural way to represent the bonded structure of small molecules is as graphs 
whose nodes are atoms and whose edges represent bond connectivity. This graph representation 
is not suitable for proteins as they contain many thousands of atoms; hence, modeling whole 
proteins at the atomic level is computationally intractable. To overcome this limitation, we 
sought to combine a sequence-based description of biopolymers (proteins and nucleic acids) with 
an atomic graph representation of small molecules and protein covalent modifications.     

Generalizing Structure Prediction to All Biomolecules 

We modeled the network architecture after the RoseTTAFold2 (RF2) protein structure prediction 
network, which accepts 1D sequence information, 2D pairwise distance information from 
homologous templates, and 3D coordinate information and iteratively improves predicted 
structures through many hidden layers(11). We retain the representations of protein and nucleic 
acid chains from RF2 and represent arbitrary small molecules, covalent modifications and 
unnatural amino acids as atom-bond graphs. To the 1D track, we input the chemical element type 
of each non-polymer atom; to the 2D track, the chemical bonds between atoms; and to the 3D 
track, information on chirality [whether chiral centers are (R) or (S)]. For the 1D track, we 
supplement the 20 residue and eight nucleic acid base representation in RFNA with 46 new 
element type tokens representing the most common element types found in the Protein Data 
Bank (PDB) (Table S5). For the 2D track atom-bond embedding, we encode pairwise 
information about whether bonds between pairs of atoms are single, double, triple, or aromatic 
bonds. These features are linearly embedded and summed with the initial pair features at the 
beginning of every recycle of the network, allowing the network to learn about bond lengths, 
angles, and planarity. Since the 1D and 2D representations in the network are invariant to 
reflections, we encode stereochemistry information in the third track by specifying the sign of 
angles between the atoms surrounding each chiral center (Fig S1); at each block in the 3D track 
the gradient of the deviation of the actual angles from the ideal values (with respect to the current 
coordinates) is computed and provided as an input feature to the subsequent block (Figure 1B). 
  
Unlike proteins and nucleic acid sequences, molecular graphs are permutation invariant, and 
hence, the network should make the same prediction irrespective of small molecule element 
token order. In AF2 and RF2, the sequence order of amino acids and bases is represented by a 
relative position encoding; for atoms, we omit such an encoding and leverage the permutation 
invariance of the network attention mechanisms. We also modify the coordinate updates: in AF2 
and RF, protein residues are represented by the coordinates of the Cα and the orientation of the 
N-C-C rigid frame (or the P coordinate and the OP1-P-OP2 frame orientation in RFNA) and 
along the 3D track the network generates rotational updates to each frame orientation and 
translational updates to each coordinate. To generalize this representation in RFAA, heavy atom 
coordinates are added to the 3D track and move independently based only on a predicted 
translational update to their position. Thus, immediately after input, the full system is represented 
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as a disconnected gas of amino acid residues, nucleic acid bases, and freely moving atoms, which 
is successively transformed through the many blocks of the network into physically plausible 
assembly structures. For the loss function to guide parameter optimization, we develop an all-
atom version of the Frame Aligned Point Error (FAPE) loss introduced in AF2 by defining 
coordinate frames for each atom in an arbitrary molecule based on the identities of its bonded 
neighbors and, as with residue based FAPE, successively aligning each coordinate frame and 
computing the coordinate error on the surrounding atoms (Figure 2A; for greater sensitivity to 
small molecule geometry, we upweight contributions involving atoms; see Supplemental 
Methods). In addition to atomic coordinates, the network predicts atom and residue-wise 
confidence (pLDDT) and pairwise confidence (PAE) metrics to enable users to identify high-
quality predictions. A full description of the RFAA architecture is provided in the Supplemental 
Methods. 

Training RFAA 

We curated a protein-biomolecule dataset from the PDB including protein-small molecule, 
protein-metal, and covalently modified protein complexes, filtering out common solvents and 
crystallization additives. Following clustering (30% sequence identity) to avoid bias towards 
overrepresented structures, we obtained 121,800 protein-small molecule structures in 5,662 
clusters, 112,546 protein-metal complexes in 5,324 clusters, and 12,689 structures with 
covalently modified amino acids in 1,099 clusters for training. To help the network learn the 
general properties of small molecules rather than features specific to the molecules in the PDB, 
we supplemented the training set with small molecule crystal structures from the Cambridge 
Structural Database(12). Each training example is sampled uniformly from the set of organic 
non-polymeric molecules, and the network predicts the coordinates for the asymmetric unit given 
atomic graph information. To further help the network learn about general atomic interactions, 
we take advantage of the commonalities between atomic interactions within proteins and many 
of the atomic interactions between proteins and small molecules and augment the training data 
by inputting portions of proteins as atoms rather than residues (a process we term atomization). 
We atomize randomly selected subsets of three to five contiguous residues by deleting the 
sequence and template features and providing instead atom, bond, and chirality information for 
the atoms in those residues (an alanine would be replaced by five atom tokens, one for each 
heavy atom). Since the atoms are still part of the polypeptide chain, we provide the relative 
position of the atom tokens with respect to the other residue tokens by adding an extra bond 
token that corresponds to an “atom-to-residue” bond and develop a positional encoding to 
account for atom-residue bonds (Supplemental Methods). To increase prediction accuracy on 
biological polymers, we train the network on protein monomer, protein complex, and protein-
nucleic acid complex examples as previously described(10, 11). All examples were cropped to 
have 256 tokens during the initial stages of training and 375 tokens during fine-tuning. The 
progress of training was monitored using independent validation sets consisting of 10% of the 
protein sequence clusters (see Table S4). 
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Unlike previous protein-only deep learning architectures(13–15), RFAA can model full 
biomolecular systems. In the following sections, we describe the performance of RFAA on 
different structure modeling tasks. We adopted the philosophy that a single model trained on all 
available data over all modalities would have the greatest ability to generalize and be more 
accessible than a series of models specialized for specific problems. 
 

Predicting Protein-Small Molecule Complexes 

To enable blind testing of RFAA prediction performance, we enrolled an RFAA server in the 
blind CAMEO ligand docking evaluation, which carries out predictions on all structures 
submitted to the PDB each week with each enrolled server and evaluates their performance(16–
18). These structures can have multiple protein chains, ligands, and metal ions (for further results 
on metal ions, see Figure S2). Of the CAMEO targets, 43% are predicted confidently by RFAA 
(PAE Interaction < 10), and 77% of those high-confidence structures are quite accurate, with < 2 
Å ligand RMSD (Figure 2B). One of the other servers is an implementation of a leading non-
deep learning protein small molecule docking method AutoDock Vina by the CAMEO 
organizers that predicts the protein structure by homology modeling(19–24), runs AutoDock to 
dock the small molecules, and ranks the poses using the Vina scoring function(9, 19). RFAA 
consistently outperformed the other servers in CAMEO on protein-small molecule modeling; for 
example, on cases modeled by both the RFAA and the AutoDock Vina servers, RFAA models 
32% of cases successfully (< 2 Å ligand RMSD) compared to 8% for the Vina server (Figure 2C; 
the Vina performance by an expert would likely be considerably improved because of the 
complexities of fully automatic multiple step modeling pipelines). The most common RFAA 
failure mode is the placement of small molecules in the correct pockets but not in the correct 
orientation (Figure S3; for further exploration of failure modes, see Supplemental Methods). 
 
There were no other deep learning docking methods (5, 25–29)  enrolled in CAMEO, but we can 
instead compare performance on a set of PDB structures that were solved after our training set 
date cutoff (30) (most earlier deep learning based docking tools have focused on the “bound” 
docking problem where the crystal structure of the target (including sidechains) are provided, 
and hence are less well suited to CAMEO). On this benchmark, RFAA predicts 42% of 
complexes successfully compared to DiffDock, which predicts 38% of complexes successfully 
(Figure 2D; RFAA predicts the protein backbone and side chains in addition to the small 
molecule dock, whereas DiffDock receives the crystal structure of the protein from the bound 
complex as input). In cases where both the bound protein structure and the pocket residues are 
provided, physics-based methods such as AutoDock Vina outperform RFAA (52% vs 42%), 
which has the much harder task of predicting both the protein backbone and sidechain details and 
the dock from sequence alone (Figure S4A). 
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To further benchmark the network, we assembled a dataset of recent PDB entries with small 
molecules bound that were deposited after the cutoff date for our training set and predicted full 
structure models for all 5,421 complexes (1,529 protein sequence clusters at 30% sequence 
identity). The network performs better for clusters with overlap with the training set, but also 
generates accurate predictions for proteins with low (BLAST e-value > 1) sequence similarity to 
the training set (35% vs. 24% success rate, respectively; Figure 2F). We observe a similar pattern 
for ligand clusters (across 1,310 ligand clusters); whereas the network makes more accurate 
predictions for ligands seen in training, it also can make accurate predictions on ligands that are 
not similar to those in training (<0.5 Tanimoto similarity; 19% vs. 14% success rate) (Figure 2F).   
In cases where RFAA predicts ligand placement with high confidence and RF2 has high 
confidence (PAE Interaction <10 and pLDDT >0.8 respectively), RFAA makes higher accuracy 
protein structure predictions than RF2 (Fig S4A), indicating that training with ligand context can 
improve overall protein prediction accuracy. Some examples of shifts predicted by RFAA but 
not by RF2 include domain movements, subtle backbone movements, and flipping of side chain 
rotamers to accommodate the ligand in the pocket (Figure S4B-C). 
 
Unlike previous methods, RFAA is able to jointly predict interactions between proteins and 
multiple non-protein ligands in a single forward pass. Figure 2D shows three examples of 
recently solved structures with three or more components for which RFAA predictions had <2 Å 
ligand RMSD (when the proteins are aligned). There are homologous complexes in the training 
set so these are not de novo predictions, but they do demonstrate that RFAA can learn the 
multicomponent assembly prediction task. The right panel shows a prediction for DNA 
polymerase (31)(PDB ID: 7u7w) with a bound DNA, non-hydrolyzable guanine triphosphate and 
magnesium ion; the network received no examples of higher order assemblies containing 
proteins with both small molecules and nucleic acids during training, but is likely synthesizing 
information from multiple related binary complexes that are in the training set.   
 
To assess whether the network can distinguish compounds known to bind from related 
compounds, we compared protein-small molecule complex predictions for the PoseBusters 
dataset for the compound known to bind and decoy molecules including small molecules with 
the highest Tanimoto similarity in the dataset. In 75.1% of cases the PAE interaction metric of 
the “decoy” complex was higher (indicating lower confidence) than the native complex (Figure 
S7). Direct optimization on this discrimination task would likely further improve performance. 
 
To determine the extent to which the network is reasoning over the detailed structure of protein-
small molecule interactions, we investigated the correlation between prediction accuracy and the 
interaction energy computed by a molecular force field. We found that predictions for protein-
small molecule complexes in our recent PDB set with lower computed binding energies (by 
Rosetta ΔG)(32, 33)) were more accurate (Figure 2G; 50%, 25%, and 22% success rates for <-
30, -30-0, and >0 Rosetta Energy Units, respectively) suggesting the network considers the 
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detailed interactions between the protein and small molecule (although reasoning over these 
interactions very differently than human designed force fields).  
  

Predicting Structures of Covalent Modifications to Proteins 

Many essential protein functions, such as receptor signaling, immune evasion, and enzyme 
activity, involve covalent modifications of amino acid side chains with sugars, phosphates, 
lipids, and other molecules(34–37). RFAA models such modifications by treating the residue and 
chemical moiety as atoms (with the corresponding covalent bond to the atom token in the 
residue) and the rest of the protein structure as residues (Figure 3A). Unnatural amino acids can 
be modeled in the same way.  
  
We benchmarked the performance of RFAA on covalent modification structure prediction on 
931 recent entries in the PDB (post-May, 2020), and found that the network made accurate 
predictions (Modification RMSD<2.5 Å) in 46% of cases (where Modification RMSD is defined 
as RMSD of the modified residue and chemical modification when the rest of the protein is 
aligned). As in the protein-small molecule complex case, confident predictions tend to be more 
accurate: 60% of structures are predicted with high confidence (PAE Interaction <10), and 63% 
of those predictions are accurate (<2.5 Å modification RMSD) (Figure 3B). Although the 
network makes slightly more accurate predictions on cases with sequence similarity (>25% 
identity) to proteins in the training set, there are still many cases (27.5%) that do not have 
sequence overlap to the training set that are predicted with high accuracy (Figure 3C). RFAA 
models interactions with covalently bound cofactors and covalently bound drugs with median 
RMSDs of 0.99 Å and 2.8 Å respectively (Figure 3D-E). 
  
Prediction of glycan structure has applications in therapeutics, vaccines, and diagnostics(38–40). 
RFAA can accurately model carbohydrate groups introduced by glycosylations with a median 
RMSD over our test set of 3.2 Å (Figure 3D). RFAA successfully predicts glycan conformations 
on the N-acetylglucosamine-1-phosphotransferase (GNPT) gamma subunit (PDB ID: 7s69), and 
human sperm TMEM ectodomain (PDB ID: 7ux0), which have low sequence homology (<30%) 
to the RFAA training set (Figure 3F) and have multiple monosaccharides and different branching 
patterns(41, 42). RFAA is not simply learning how structure building programs model glycans as 
the predictions match the experimental density maps (Fig S8C).  The network is able to make 
accurate predictions of glycan interactions even when the sequences were distant from the 
sequences in the training set, and on glycans with chains up to seven monosaccharides (Figure 
S8). 
  
It is difficult to compare to other methods because, to our knowledge, previous deep learning-
based tools do not model covalent modifications to proteins. Accurate and robust modeling of 
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covalent modifications in predicted structures should contribute to the understanding of 
biological function and mechanism. 

De Novo Small Molecule Binder Design 

Previous work on small molecule binding protein design has involved docking molecules into 
large sets of native or expert-curated protein scaffold structures(43)-(44). Diffusion based 
methods can generate proteins in the context of a protein target that bind with considerable 
affinity and specificity(45) and can be trained to explicitly condition on structural features(46). 
However, current deep learning based generative approaches do not explicitly model protein-
ligand interactions, so they are not directly applicable to the small molecular binder design 
problem (in RFdiffusion, a heuristic attractive-repulsive potential encouraged the formation of 
pockets with shape complementarity to a target molecule, but the approach was unable to model 
the details of protein-small molecule interactions (45)). A general method that can generate 
protein structures around small molecules and other non-protein targets to maximize favorable 
interactions could be broadly useful. 
 
We reasoned that RFAA could enable protein design in the context of non-protein biomolecules 
following fine-tuning on structure denoising. We developed a diffusion model, RFdiffusion All-
Atom (RFdiffusionAA), by training a denoising diffusion probabilistic model (DDPM) 
initialized with the RFAA structure-prediction weights to denoise corrupted protein structures 
conditioned on small molecules and other biomolecular context (Figure 4A). Input structures 
from the protein-small molecule dataset described above were noised through progressive 
addition of 3D Gaussian noise to the Cα coordinates and Brownian motion on the manifold of 
rotations, and the model was trained to predict the denoised structures. In contrast to training for 
the unconditional generation problem and incorporating conditional information through forms 
of guidance(47),(48), we train an explicitly conditional model that learns the distribution of 
proteins conditioned on biomolecular substructure. To enable the inclusion of specific protein 
functional motifs when desired, we also train the network to scaffold a variety of discontiguous 
protein motifs both in the presence and absence of small molecules. To generate proteins, we 
initialize a Gaussian distribution of residue frames with randomized rotations around a fixed 
small molecule motif; at each denoising step t, we predict the fully denoised X0 state and then 
update all residue coordinates and orientations by taking a step towards this conformation while 
adding noise to match the distribution for Xt-1. As with RFdiffusion, we investigated the use of 
auxiliary potentials to influence trajectories to make more contacts between small molecules and 
binders, but found these unnecessary (see Figure S10C). 
  
We evaluated RFdiffusionAA in silico by generating protein structures in the context of four 
diverse small molecules. Starting from random residue distributions surrounding each of the 
small molecules, iterative denoising yielded coherent protein backbones with pockets 
complementary to the small molecule target. Following sequence design using LigandMPNN  
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(49, 50), Rosetta GALigandDock(32) energy calculations were used to evaluate the protein-small 
molecule interface and AF2 predictions to evaluate the extent the sequence encodes the designed 
structure (45)-(51). The computed binding energies of RFdiffusionAA designs are far better 
(p<1.56E-12) than those obtained using a heuristic attractive/repulsive potential with protein-
only RFdiffusion (Figure S10C).  AF2 structure predictions had backbone RMSD < 2 Å to the 
RFdiffusionAA design models in all cases (Figure S10C). For each small molecule, 
RFdiffusionAA generates diverse protein structural solutions to the binding problem that differ 
from native binders to these ligands (Figure S11, Figure S12). 

Experimental Characterization of Designed Binders 

To experimentally evaluate RFdiffusionAA across a range of design scenarios, we designed 
binders for three diverse small molecules: one with no protein motif included in the design 
parameters, one with a single residue protein motif, and one with a four residue protein motif 
(Fig. 4). The proteins were produced in E. coli, and ligand binding was measured experimentally. 
  
Digoxigenin (DIG) is the aglycone of digoxin, a small molecule used to treat heart diseases with 
a narrow therapeutic window(52), and digoxigenin-binding proteins could help reduce 
toxicity(53). Previous attempts to design digoxigenin-binding proteins relied on protein scaffolds 
with experimentally determined structures and prespecified binding pockets and interacting 
motifs(54). We used RFdiffusionAA to design digoxigenin-binding backbones without any prior 
assumption about the protein-ligand interface or backbone structure (Figure 4A). Sequences were 
obtained using LigandMPNN and Rosetta FastRelax(55) and 4,416 designs were selected based 
on consistency with AF2 predictions and Rosetta metrics (Supplemental Methods). Experimental 
characterization identified several DIG-binding proteins (Figures S29-30, Supplemental 
Methods); the highest affinity binder has a 343 nM Kd for free digoxigenin (measured by 
isothermal titration calorimetry, Figure 4B) and is stable at temperatures up to 95°C. 
  
Heme is a cofactor for a wide range of oxidation reactions and oxygen transport (cytochrome 
P450 and hemoglobin are two notable examples), with catalytic function enabled by 
pentacoordinate iron binding and an open substrate pocket(56, 57). Designed heme-binding 
proteins with these features have considerable potential as a platform for the development of new 
enzymes(58). We diffused proteins around heme with the central iron coordinated by a cysteine 
and placeholder molecule just above the porphyrin ring to keep the axial heme binding site open 
for potential substrate molecules. Of 168 designs selected based on AF2 predicted confidence 
(pLDDT), backbone RMSD to design, and RMSD of the predicted cysteine rotamer to the 
design, 135 were well expressed in E. coli, and 90 had UV/Vis spectra consistent with Cys-
bound heme (as judged by the Soret maximum wavelength after in vitro heme loading)(59). We 
further purified 40 of the designs and found that 33 were monomeric and retained heme-binding 
through size exclusion chromatography (SEC). For 26 of the designs, we mutated the putative 
heme-coordinating cysteine residue to alanine which led to a notable change in the Soret features 
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in all cases (Figure 4; Figure S13-16). Twenty designs exhibit high thermostability, retaining 
their heme binding at temperatures above 85 ℃, and do not unfold at temperatures up to 95 ℃ 
(Figure 4C and Figure S13-16). We solved the crystal structure of heme-loaded design 
HEM_3.C9 to 1.8 Å resolution (PDB ID: 8vc8) and found it to closely match the design model 
(0.86 Å Cα RMSD). The crystal structure verifies that heme is bound through Cys-ligation in a 
pentacoordinate fashion with an open distal pocket (in agreement with spectroscopic data) and is 
further held in place with hydrogen bonds to two arginines, as designed (Figure S17). 
  
Bilins are brilliantly colored pigments that play important roles across diverse biological 
kingdoms. When bilins are constrained by protein scaffolds, such as phycobiliproteins in the 
megadalton phycobilisome antenna complexes of cyanobacteria and some algae (60), their 
absorption features narrow, their extinction coefficients increase, and their fluorescence is 
dramatically enhanced. We sampled diffusion trajectories conditioned on the structure of a  bilin 
molecule attached to a four residue peptide corresponding to a motif recognized by the CpcEF 
bilin lyase (61), (62). We evaluated 94 designs with a whole cell screen using phycoerythrobilin 
(PEB) as the chromophore and identified nine proteins dissimilar to each other and to CpcA 
(Figure S18A) that bind bilin based on pigmentation or fluorescence (a 9.6% hit rate). We 
purified three designs - BIL_C11, BIL_H4, and BIL_F9 - with absorption maxima at 573, 605, 
and 607 nm compared to 557 nm for the CpcA-PEB (Figure 5C, S8B; the extent of red shifting 
correlates with computed electrostatic potential around the chromophore (Figure S19)). 
Conformationally restricted bilins typically display higher fluorescence yields, absolute 
fluorescence yields for the BIL_C11, BIL_H4, and BIL_F9 designs are 38%, 11% and 25%, 
respectively, based on an earlier determination of the absolute fluorescence quantum yield for 
CpcA-PEB of 67% (63) (Figure S18C). These values are much higher than obtained previously 
with maquette scaffolds (FΦ values of 2-3%), which displayed limited bilin incorporation and 
less pronounced spectral enhancements (64). The strong coloration, absorption and emission for 
these designs were absent from control E. coli strains that synthesize only the PEB bilin and the 
CpcE/F lyase, or PEB, CpcE/F and maltose binding protein (Figure S20). The 34/30 nm range in 
absorption/emission covered by just one design round using a single chromophore raises the 
exciting prospect of tailoring the spectral profiles of designed biliproteins by manipulating the 
conformational flexibility of the bilin and the protein microenvironment. De novo designed 
antenna complexes could harvest light over a wider range of the UV-visible spectrum to enhance 
photosynthetic energy capture and conversion (65), and fluorescent reporter probes with tunable 
excitation/emission maxima would be useful biochemical tools. 
 
The experimental validation of digoxigenin, heme and bilin binding proteins demonstrates that 
RFdiffusionAA can readily generate novel proteins with custom binding pockets for diverse 
small molecules. Unlike prior methods that rely on redesigning existing scaffolds, 
RFdiffusionAA builds proteins from scratch around the target compound, resulting in high 
shape-complementary in the binding pockets and reducing the need for expert knowledge. The 
ability of RFdiffusionAA to generalize is highlighted by the sequence and structural dissimilarity 
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between the designs and proteins in the PDB that bind related molecules (related meaning 
Tanimoto similarity > 0.5); the most similar protein in the PDB that binds a related molecule has 
a TMscore of 0.59 for the highest affinity digoxigenin binder, less than 0.62 for all the 
characterized heme binders, and less than 0.52 for the bilin binders (Figure S21). In all cases 
there is no detectable sequence similarity to any known protein. 

Discussion 

RoseTTAFold All-Atom (RFAA) demonstrates that a single neural network can be trained to 
accurately model a wide range of general biomolecular assemblies containing a wide diversity of 
non-protein components. RFAA can make high-accuracy predictions on protein-small molecule 
complexes, with 32% of CAMEO targets predicted under 2 Å RMSD, and for covalent 
modifications to proteins, predicting 46% of recently solved covalent modifications under 2.5 Å 
RMSD, and generate accurate models for complexes of proteins with two or more non-protein 
molecules (small molecules, metals, nucleic acids, etc.). Training on more extensive datasets will 
likely be necessary to generate consistently accurate predictions for new protein-small molecule 
complexes on par with the accuracy deep networks can achieve on protein systems alone. These 
new prediction capabilities do not come at the expense of performance on the classic protein 
structure prediction problem: RFAA achieves similar protein structure prediction accuracy as 
AF2 (median GDT of 85 vs. 86) and protein-nucleic acid complex accuracy as RFNA (median 
allatom-LDDT of 0.74 vs. 0.78) (Figure S22). 
  
Our prediction and design results suggest that  RFAA has learned detailed features of protein-
small molecule complexes. First, the network is able to make high-accuracy predictions for 
protein sequences and ligands that differ considerably from those in the training dataset (Figure 
2F, 3C), and prediction accuracy is higher for complexes with more favorable computed 
interaction energies using the Rosetta physically based model (Figure 2G). Second, our 
RFdiffusionAA-generated bilin, heme, and digoxigenin binders have very different structures 
than  proteins that bind these compounds in the PDB. RFAA should be immediately useful for 
modeling protein-small molecule complexes, in particular multicomponent biomolecular 
assemblies for which there are few or no alternative methods available, and for designing small 
molecule binding proteins and sensors. 
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Figure 1. 
General biomolecular modeling with RoseTTAFold All-Atom A) RFAA takes input 
information about the molecular composition of the biomolecular assembly to be modeled, 
including protein amino acid and nucleic acid base sequences, metal ions, small molecule bonded 
structure, and covalent bonds between small molecules and proteins. B) Processing of molecular 
input information. Small molecule information is parsed into element types (46 possible types), 
bond types, and chiral centers. Covalent bonds between proteins and small molecules are provided 
as a separate token in the bond adjacency matrix. The three-track architecture mixes 1D, 2D, and 
3D information and predicts all-atom coordinates and model confidence. 



 

 



 

Figure 2. RoseTTAFold All-Atom can accurately predict protein-small molecule complex 
structures. All panels: Predicted protein structure (aligned to native): transparent teal, predicted 
ligand conformation: teal, native ligand conformation: gray. All boxplots cut off at 20 Å for clarity. 
A) Every “atom” node is assigned a local coordinate frame based on the identities of its neighbors. 
To compute the main loss in the network, we align each atom's coordinate frame in the predicted 
and true structures and measure the error over all the other atoms. B) Model accuracy correlates 
with error predictions. Computed for CAMEO targets (05/20/23-7/29/23; 261 protein-small 
molecule interfaces). Ligand RMSD was computed by CAMEO organizers. C) RFAA outperforms 
AutoDock Vina on CAMEO targets (Week 8/12/23-09/02/23; 149 protein-small molecule interfaces). 
Both servers have to model the protein, find pockets for all ligands present in the solved structure, 
and the correct docks for all ligands. Ligand RMSD for both servers was computed by CAMEO 
organizers, AutoDock Vina server set up by CAMEO organizers. D) Three examples of successful 
predictions with multiple biomolecules. From left to right: fatty acid decarboxylase (PDB ID: 8d8p; 
Seq ID: 34%; from CAMEO) with a heme cofactor and a lipid substrate, a dimeric tyrosine 
methyltransferase (PDB ID: 7ux8; Seq ID: 28%; CASP15 Target: T1124) with an S-adenosyl 
homocysteine and tyrosine interaction and a DNA polymerase (PDB ID: 7u7w; Seq ID: 100%) 
bound to DNA, a nucleotide and a metal ion(31, 66, 67). E) Comparison to other deep learning-
based docking methods. In this case, each method was applied in their respective training regime. 
For RFAA this means only having sequence and minimal atomic graph inputs, whereas for other 
methods this involves providing the bound crystal structure. Ligand RMSD was computed using 
PoseBusters suite, and a single example present in our training set was removed for all methods in 
comparison. F) Comparison of RFAA predictions on recently solved PDBs that are novel compared 
to the training set (Homolog <1 BLAST e-value, Similar Ligand >0.5 Tanimoto Similarity). Each 
set is clustered based on sequence/ligand similarity, and a random cluster representative is chosen 
for each. G) Comparison of RFAA prediction accuracy to Rosetta ΔG energy estimates for the 
native complex (over 940 cases that were successfully processed by Rosetta). RFAA makes more 
accurate predictions for native complexes with low Rosetta energy. H) Three examples of successful 
predictions with low similarity to the training set. From left to right: G protein-coupled S1P receptor 
(PDB ID: 7ew1; Seq ID: 31%), complex of DLK bound to an inhibitor (PDB ID: 8ous; Seq ID: 
39%), a Renilla luciferase bound to an azacoelenterazine (non-native substrate; PDB ID: 7qxr; Seq 
ID: 23%).(68–70) 
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Figure 3. Accurate prediction of protein covalent modifications. All panels: transparent teal: 
predicted protein structure, transparent gray: native structure, teal: predicted covalent 
modification, gray: native covalent modification. A) Schematic describing how RFAA models 
covalent modifications to proteins. The chemical moiety that modifies the residue and the residue 
are modeled as atom nodes, and the rest of the protein is modeled as residues (with MSA and 
template inputs). B) Model accuracy correlates with predicted error on a set of 938 recently solved 
structures with covalent modifications. Modification RMSD is computed by aligning the protein 
structure within 10 Å and computing RMSD over the modified residue and chemical modification. 



 

Boxplot cut off at 15 Å for clarity. C) Comparison of sequence identity to training set and model 
accuracy. Models are generally accurate even with low sequence homology to the training set. D) 
Comparison of model accuracy for different types of covalent modifications. E) Top: Example of 
successfully predicted covalently linked enzyme cofactor (PDB ID: 7p3t; Seq ID: 28%), which is a 
structure of a ( R )-selective amine transaminase. Bottom: example of a covalently bound drug 
candidate (PDB ID: 7ti1, Seq ID: 27%), which is a β-lactamase enzyme bound to cyclic boronic acid 

inhibitor(71, 72). F) Accurate predictions of glycans on the N-acetylglucosamine-1-
phosphotransferase (GNPT) gamma subunit (PDB ID: 7s69; No BLAST hits), human sperm 
TMEM ectodomain (PDB ID: 7ux0; Seq ID: 26%)(41, 42).   
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Figure 4. Experimental characterization of RFdiffusionAA designed binders. All panels: input 
ligand shown in yellow, input protein motif shown in blue, and diffused protein shown in teal. 
Purple text: Closest TM Score to any protein in the training set, Blue text: Closest TM Score to any 
protein with a similar ligand bound in the training set (Tanimoto >0.5). A) Schematic depicting the 
random initialization of residues surrounding a small molecule and progressive denoising by 
RfdiffusionAA. B) Characterization of dioxigenin binder design. (From left to right) Input motif to 
RFdiffusionAA, designed protein, zoom in view of binding site sidechains. Isothermal Calorimetry 
(ITC) measuring binding affinity (Kd = 343 nM), CD trace (26 µM protein concentration; inlay CD 
Melt showing intensity at 220 nm across a broad range of temperatures). C) Characterization of 
heme binding designs. (From left to right) Input motif to RFdiffusionAA, designed protein aligned 
to its crystal structure (PDB ID: 8vc8); zoom in view of binding site; (top) UV-Vis spectra of 
designed protein matches expected spectra for penta-coordinated heme and mutating cysteine to 
alanine abolishes binding; (bottom) designed protein retains heme binding at temperatures up to 
90°C. D) Characterization of bilin binding designs. (Row 1, left to right) Input motif to 
RFdiffusionAA, three designs with different predicted structural topologies. (Row 2, left to right) 
Zoom in view of binding sites for each design. (Row 3, left to right) Normalized absorption spectra 
for the three designs shown. Designs have a range of maximum absorption wavelengths and hence 
different colors in solution (inset). 

 


