4,244 research outputs found

    Whole-body heat stress and exercise stimulate the appearance of platelet microvesicles in plasma with limited influence of vascular shear stress

    Get PDF
    Intense, large muscle mass exercise increases circulating microvesicles, but our understanding of microvesicle dynamics and mechanisms inducing their release remains limited. However, increased vascular shear stress is generally thought to be involved. Here, we manipulated exercise-independent and exercise-dependent shear stress using systemic heat stress with localized single-leg cooling (low shear) followed by single-leg knee extensor exercise with the cooled or heated leg (Study 1, n = 8) and whole-body passive heat stress followed by cycling (Study 2, n = 8). We quantified femoral artery shear rates (SRs) and arterial and venous platelet microvesicles (PMV-CD41+) and endothelial microvesicles (EMV-CD62E+). In Study 1, mild passive heat stress while one leg remained cooled did not affect [microvesicle] (P ≥ 0.05). Single-leg knee extensor exercise increased active leg SRs by ~12-fold and increased arterial and venous [PMVs] by two- to threefold, even in the nonexercising contralateral leg (P < 0.05). In Study 2, moderate whole-body passive heat stress increased arterial [PMV] compared with baseline (mean±SE, from 19.9 ± 1.5 to 35.5 ± 5.4 PMV.μL-1.103, P < 0.05), and cycling with heat stress increased [PMV] further in the venous circulation (from 27.5 ± 2.2 at baseline to 57.5 ± 7.2 PMV.μL-1.103 during cycling with heat stress, P < 0.05), with a tendency for increased appearance of PMV across exercising limbs. Taken together, these findings demonstrate that whole-body heat stress may increase arterial [PMV], and intense exercise engaging either large or small muscle mass promote PMV formation locally and systemically, with no influence upon [EMV]. Local shear stress, however, does not appear to be the major stimulus modulating PMV formation in healthy humans

    Dehydration accelerates reductions in cerebral blood flow during prolonged exercise in the heat without compromising brain metabolism

    Get PDF
    Dehydration hastens the decline in cerebral blood flow (CBF) during incremental exercise, while the cerebral metabolic rate for oxygen (CMRO2) is preserved. It remains unknown whether CMRO2 is also maintained during prolonged exercise in the heat and whether an eventual decline in CBF is coupled to fatigue. Two studies were undertaken. In study 1, ten male cyclists cycled in the heat for ~2 h with (control) and without fluid replacement (dehydration) while internal (ICA) and external (ECA) carotid artery blood flow and core and blood temperature were obtained. Arterial and internal jugular venous blood samples were assessed with dehydration to evaluate the CMRO2. In study 2 (8 males), middle cerebral artery blood velocity (MCA Vmean) was measured during prolonged exercise to exhaustion in both dehydrated and euhydrated states. After a rise at the onset of exercise, ICA flow declined to baseline with progressive dehydration (P < 0.05). However, cerebral metabolism remained stable through enhanced oxygen and glucose extraction (P < 0.05). ECA flow increased for one hour but declined prior to exhaustion. Fluid ingestion maintained cerebral and extra-cranial perfusion throughout non-fatiguing exercise. During exhaustive exercise, however, euhydration delayed but did not prevent the decline in cerebral perfusion. In conclusion, during prolonged exercise in the heat dehydration accelerates the decline in CBF without affecting CMRO2 and also restricts extra-cranial perfusion. Thus fatigue is related to reduction in CBF and extra-cranial perfusion rather than in CMRO2.The study was supported by a grant from the Gatorade Sports Science Institute, PepsiCo Inc, USA

    Vasopressin Regulates the Phosphorylation State of AMP-activated Protein Kinase (AMPK) in MDCK-C7 Cells

    Get PDF
    AMP-activated protein kinase (AMPK) is a regulatory kinase coupling cellular metabolism with ion transport. Madin-Darby Canine Kidney-Clone 7 (MDCK-C7) cells possess characteristics of the renal principal cell type, express the cystic fibrosis transmembrane regulator and the epithelial Na(+) channel, and display NPPB and amiloride-sensitive transepithelial transport when stimulated with [Arg(8)]-vasopressin. [Arg(8)]-vasopressin binding to its receptor on the basolateral membrane of MDCK-C7 results in cAMP production, activation of cAMP-dependent protein kinase A (PKA), and increases in Cl(-) and Na(+) transport. Ussing-style electrophysiology showed that the PKA inhibitor, H89, blocked Cl(-) and Na(+) transport. Unexpectedly, [Arg(8)]-vasopressin stimulation resulted in the dephosphorylation of pAMPK(thr172). H89 did not prevent this, suggesting that the dephosphorylation is independent of PKA. 24 hour, but not 15 minute, incubation with the AMPK activator, AICAR, also blocked [Arg(8)]-vasopressin-stimulated currents. Contrary to previous studies, immunoblotting revealed that AICAR did not increase abundance of the active, phosphorylated form of AMPK (pAMPK(thr172)); although, AICAR treatment significantly blocked [Arg(8)]-vasopressin -stimulated cAMP production. [Arg(8)]-vasopressin still caused pAMPK(thr172) dephosphorylation in the presence of AICAR, suggesting that this effect is also independent of cAMP. In summary, these data suggest [Arg(8)]-vasopressin regulates AMPK phosphorylation and that AICAR inhibits ion transport independently of AMPK in MDCK-C7 cells

    Lignin peroxidases, manganese peroxidases, and other ligninolytic enzymes produced by Phlebia radiata during solid-state fermentation of wheat-straw

    Get PDF
    The white rot fungus Phlebia radiata 79 (ATCC 64658) produces lignin peroxidase (LiP), manganese peroxidase (MnP), glyoxal oxidase (GLOX), and laccase in the commonly used glucose low-nitrogen liquid medium. However, the enzymes which this fungus utilizes for selective removal of lignin during degradation of different lignocellulosic substrates have not been studied before. Multiple forms of LiP, MnP, GLOX, and laccase were purified from P. radiata culture extracts obtained after solid-state fermentation of wheat straw. However, the patterns of extracellular lignin-modifying enzymes studied were different from those of the enzymes usually found in liquid cultures of P. radiata. Three LiP isoforms were purified. The major LiP isoform from solid-state cultivation was LiP2. LiP3, which has usually been described as the major isoenzyme in liquid cultures, was not expressed during straw fermentation. New MnP isoforms have been detected in addition to the previously reported MnPs. GLOX was secreted in rather high amounts simultaneously with LiP during the first 2 weeks of growth. GLOX purified from P. radiata showed multiple forms, with pIs ranging from 4.0 to 4.6 and with a molecular mass of ca. 68 kDa

    Is age a barrier to chemotherapy? Rates of treatment in older patients with breast, colon or lung cancer in England in 2014: A national registry study

    Get PDF
    Background Survival from cancer in older patients is poorer in the UK than other countries with similar health systems and wealth possibly due to undertreatment and increased toxicities in this specific population. This population-based observational study describes factors affecting systemic anticancer treatment (SACT) use in older patients in England. Methods We identified patients aged ≥70 with stage II-III breast cancer, stage III colon cancer and stage IIIB-IV non-small cell lung cancer (NSCLC) diagnosed in 2014 from a dataset collected by the National Health Service in England. We used logistic regression to estimate factors affecting likelihood of receiving SACT and performed separate regression analyses for each disease, adjusting for age, gender, stage at diagnosis, pathological features, performance status, Charlson comorbidity index, ethnicity and socioeconomic group. We assessed 2-year overall survival (OS) using Kaplan-Meier method. Case mix adjusted treatment rates and workload volume were calculated at hospital level and presented using funnel plots, stratified by age groups (<70 and ≥70) to allow for assessment of variation between centres. Results 36892 patients were identified: 19879 with stage II-III breast cancer, 5292 with stage III colon cancer and 11721 with stage IIIB-IV NSCLC. Patients over 70 were less likely to receive SACT compared to those aged under 70: breast 11.7% vs 64.6%, p < 0.001; colon 37.4% vs 79%, p < 0.001; NSCLC 33.5% vs 60.2%, p < 0.001. 2-year OS for patients receiving SACT was similar for patients aged ≥70 and <70: breast 91.5% (95% CI: 89.3%-93.2%) vs 96.4% (95% CI: 95.9%-96.7%); colon 84.8% (95% CI: 82.6%-86.8%) vs 88.3% (95% CI: 86.7%-89.8%); NSCLC 16.7% (95% CI: 15.1%-18.4%) vs 19.8% (95%CI: 18.5%-21.1%). Patients receiving SACT had better OS than those untreated. SACT rates varied widely between hospitals after adjusting for case-mix across all ages. Conclusions Our study suggests that several factors affect the likelihood of receiving SACT but after adjusting for these, age remains determinant. Identifying hospitals with significantly lower SACT rates should prompt local review of multidisciplinary team practice
    • …
    corecore