35 research outputs found

    Finite self-similar p-groups with abelian first level stabilizers

    Full text link
    We determine all finite p-groups that admit a faithful, self-similar action on the p-ary rooted tree such that the first level stabilizer is abelian. A group is in this class if and only if it is a split extension of an elementary abelian p-group by a cyclic group of order p. The proof is based on use of virtual endomorphisms. In this context the result says that if G is a finite p-group with abelian subgroup H of index p, then there exists a virtual endomorphism of G with trivial core and domain H if and only if G is a split extension of H and H is an elementary abelian p-group.Comment: one direction of theorem 2 extended to regular p-group

    Elementary amenable subgroups of R. Thompson's group F

    Full text link
    The subgroup structure of Thompson's group F is not yet fully understood. The group F is a subgroup of the group PL(I) of orientation preserving, piecewise linear self homeomorphisms of the unit interval and this larger group thus also has a poorly understood subgroup structure. It is reasonable to guess that F is the "only" subgroup of PL(I) that is not elementary amenable. In this paper, we explore the complexity of the elementary amenable subgroups of F in an attempt to understand the boundary between the elementary amenable subgroups and the non-elementary amenable. We construct an example of an elementary amenable subgroup up to class (height) omega squared, where omega is the first infinite ordinal.Comment: 20 page

    When endomorphisms of G

    Get PDF

    Lie Algebras and Growth in Branch Groups

    Full text link
    We compute the structure of the Lie algebras associated to two examples of branch groups, and show that one has finite width while the other, the ``Gupta-Sidki group'', has unbounded width. This answers a question by Sidki. More precisely, the Lie algebra of the Gupta-Sidki group has Gelfand-Kirillov dimension log3/log(1+2)\log3/\log(1+\sqrt2). We then draw a general result relating the growth of a branch group, of its Lie algebra, of its graded group ring, and of a natural homogeneous space we call "parabolic space", namely the quotient of the group by the stabilizer of an infinite ray. The growth of the group is bounded from below by the growth of its graded group ring, which connects to the growth of the Lie algebra by a product-sum formula, and the growth of the parabolic space is bounded from below by the growth of the Lie algebra. Finally we use this information to explicitly describe the normal subgroups of the "Grigorchuk group". All normal subgroups are characteristic, and the number of normal subgroups of index 2n2^n is odd and is asymptotically nlog2(3)n^{\log_2(3)}
    corecore