2,019 research outputs found

    Damage mechanisms in bithermal and thermomechanical fatigue of Haynes 188

    Get PDF
    Post failure fractographic and metallographic studies were conducted on Haynes 188 specimens fatigued under bithermal and thermomechanical loading conditions between 316 and 760 C. Bithermal fatigue specimens examined included those tested under high strain rate in-phase and out-phase, tensile creep in-phase, and compressive creep out-of-phase loading conditions. Specimens tested under in-phase and out-of-phase thermomechanical fatigue were also examined. The nature of failure mode (transgrandular versus intergranular), the topography of the fracture surface, and the roles of oxidation and metallurgical changes were studied for each type of bithermal and thermomechanical test

    Thermomechanical and bithermal fatigue behavior of cast B1900 + Hf and wrought Haynes 188

    Get PDF
    High temperature thermomechanical and bithermal fatigue behavior was investigated for two superalloys: cast nickel-base B1900+Hf and wrought cobalt-base Haynes 188. Experimental results were generated to support development of an advanced thermal fatigue life prediction method. Strain controlled thermomechanical and load-controlled, strain-limited, bithermal fatigue tests were used to determine the fatigue crack initiation and cyclic stress-strain response characteristics of superalloys. Bithermal temperatures of 483 and 871 C were used for B1900+Hf, and 316 and 760 C for Haynes 188. Thermomechanical fatigue tests were conducted by using maximum and minimum temperatures corresponding to those for the bithermal experiments. Lives cover the range from about 10 to 3000 cycles to failure. Isothermal fatigue results obtained previously are also discussed

    Structural Benchmark Creep Testing for the Advanced Stirling Convertor Heater Head

    Get PDF
    The National Aeronautics and Space Administration (NASA) has identified the high efficiency Advanced Stirling Radioisotope Generator (ASRG) as a candidate power source for use on long duration Science missions such as lunar applications, Mars rovers, and deep space missions. For the inherent long life times required, a structurally significant design limit for the heater head component of the ASRG Advanced Stirling Convertor (ASC) is creep deformation induced at low stress levels and high temperatures. Demonstrating proof of adequate margins on creep deformation and rupture for the operating conditions and the MarM-247 material of construction is a challenge that the NASA Glenn Research Center is addressing. The combined analytical and experimental program ensures integrity and high reliability of the heater head for its 17-year design life. The life assessment approach starts with an extensive series of uniaxial creep tests on thin MarM-247 specimens that comprise the same chemistry, microstructure, and heat treatment processing as the heater head itself. This effort addresses a scarcity of openly available creep properties for the material as well as for the virtual absence of understanding of the effect on creep properties due to very thin walls, fine grains, low stress levels, and high-temperature fabrication steps. The approach continues with a considerable analytical effort, both deterministically to evaluate the median creep life using nonlinear finite element analysis, and probabilistically to calculate the heater head s reliability to a higher degree. Finally, the approach includes a substantial structural benchmark creep testing activity to calibrate and validate the analytical work. This last element provides high fidelity testing of prototypical heater head test articles; the testing includes the relevant material issues and the essential multiaxial stress state, and applies prototypical and accelerated temperature profiles for timely results in a highly controlled laboratory environment. This paper focuses on the last element and presents a preliminary methodology for creep rate prediction, the experimental methods, test challenges, and results from benchmark testing of a trial MarM-247 heater head test article. The results compare favorably with the analytical strain predictions. A description of other test findings is provided, and recommendations for future test procedures are suggested. The manuscript concludes with describing the potential impact of the heater head creep life assessment and benchmark testing effort on the ASC program

    Peptide-mediated targeted delivery system towards triple negative breast cancer treatment

    Get PDF
    About 2.1 million new diagnosed breast cancer cases among women were estimated for 2018. Triple negative breast cancer (TNBC), characterized by the absence of hormone receptors (estrogen and progesterone), lack of expression of epidermal growth factor receptor-2 and poor prognosis, represents 10-20% of all breast cancers. Hence, the identification of novel biomarkers for this type of breast cancer is highly relevant for an early diagnosis. Additionally, TNBC peptide ligands can be used to design powerful drug delivery systems that specifically target this type of breast cancer. Therefore, the following study aimed to select and characterize novel peptides for a triple negative breast cancer murine mammary carcinoma cell line 4T1. Using phage display, 7 and 12 amino acid random peptide libraries were screened against the 4T1 cell line. A total of four rounds, plus a counter-selection round using the 3T3 murine fibroblast cell line, was performed. The enriched selective peptides were characterized and their binding capacity towards 4T1 tissue samples was confirmed by immunofluorescence and flow cytometry analysis. The selected peptides (4T1pep1 CPTASNTSC and 4T1pep2EVQSSKFPAHVS) were enriched over few rounds of selection and exhibited specific binding to the 4T1 cell line. Exosomes derived from BJ cells were isolated by differential centrifugation and further characterized by nanoparticle tracking analysis, transmission electron microscopy (TEM), flow cytometry and western blot. Cell-derived exosomes were efficiently uptake by different TNBC cell lines (MDA-MB-231, MDA-MB-453, MDA-MB-157 and Hs 578T). Moreover, in vivo circulation times and biodistribuition experiments were accomplished to assess performance. The ultimate goal is to develop multifunctional exosomes decorated with the previously selected peptides to achieve a drug delivery system with increased affinity/selectivity for triple negative breast cancer cells. Targeted exosomes have led to a completely new paradigm for the therapeutic delivery of drug molecules to specific targets, opening the door for new treatments of diseases caused by aberrant gene expression as cancer.info:eu-repo/semantics/publishedVersio

    Prestraining and Its Influence on Subsequent Fatigue Life

    Get PDF
    An experimental program was conducted to study the damaging effects of tensile and compressive prestrains on the fatigue life of nickel-base, Inconel 718 superalloy at room temperature. To establish baseline fatigue behavior, virgin specimens with a solid uniform gage section were fatigued to failure under fully-reversed strain-control. Additional specimens were prestrained to 2 percent, 5 percent, and 10 percent (engineering strains) in the tensile direction and to 2 percent (engineering strain) in the compressive direction under stroke-control, and were subsequently fatigued to failure under fully-reversed strain-control. Experimental results are compared with estimates of remaining fatigue lives (after prestraining) using three life prediction approaches: (1) the Linear Damage Rule; (2) the Linear Strain and Life Fraction Rule; and (3) the nonlinear Damage Curve Approach. The Smith-Watson-Topper parameter was used to estimate fatigue lives in the presence of mean stresses. Among the cumulative damage rules investigated, best remaining fatigue life predictions were obtained with the nonlinear Damage Curve Approach
    • …
    corecore