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CUMULATIVE FATIGUE DAMAGE BEHAVIOR OF MAR M-247
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Cumulative Fatigue Damage Analysis is the term used to describe the

assessment of fatigue lives of metallic materials under variable amplitude or

block loading. A linear life-fraction rule, known as the Palmgren-Miner Linear

Damage Rule (LDR) is the standard model currently used in engineering design for

assessing cumulative fatigue-damage. In recent years, it has been discovered

that engineering metals and alloys exhibit pronounced nonlinear cumulative

fatigue damage behavior under certain conditions of loading. Conditions for

which pronounced nonlinearity and subsequent fatigue life degradation might

exist can now be identified readily using engineering models developed at the
Lewis Research Center of NASA. The models reflect the accumulation of fatigue

damage through the nonlinear sequence of microcrack initiation, microcrack

growth, macrocrack initiation, macrocrack growth, and eventual fracture. Despite

the extreme complexity of the physical mechanisms of fatigue, relatively simple

engineering models have evolved. They are proving useful in guiding the

evaluation of the cumulative fatigue damage behavior of materials tested in

laboratory environments.

The simplest and most common laboratory test procedure for evaluating

cumulative damage behavior is the two-level loading sequence in which low-cycle

fatigue (LCF) is applied for a portion of the expected LCF life followed by

high-cycle fatigue (HCF) loading until failure. Analysis of hundreds of two-

level loading experimental results from the literature has led to the develop-

ment of several simple engineering models, including: the Double Linear Damage

Rule (DLDR), the Damage Curve Approach (DCA), and the Double Damage Curve Ap-

proach (DDCA). Each has its regime of utility, but all three give rise to essen-

tially the same numerical results. Another common attribute in these models is

the recognition that the degree of nonlinearity in damage accumulation depends

solely upon relative life levels of the extreme cycles. In other words, LCF/HCF
lives of 102/105 or 104/107 will exhibit equal degrees of nonlinearity and hence

equal degrees of fatigue life degradation.

The object of this study was to examine the room temperature fatigue and
nonlinear cumulative fatigue damage behavior of the cast nickel-base superalloy,
MAR M-247. This is the bill-of-material for the turbine housings and inlet

guide vanes of both the oxidizer and fuel turbopump designs from the Alternate
Turbopump Development (ATD) program. Pratt & Whitney Corp. (West Palm Beach
group) is performing this program under contract to NASA Marshall Space Flight
Center. Through a small cooperative agreement with NASA Lewis Research Center,
a casting of MAR M-247 was obtained from Pratt & Whitney Corp. The casting was
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produced using the MICROCAST-Xprocess of the HowmetCorp. and had been HIPed
and heat treated according to engineering use specifications from the ATDpro-
gram requirements. Axial fatigue specimens possessing a half-inch uniform gage
section were machined from this casting.

The fatigue test matrix carried consisted of single-level, fully reversed
(R = -i, either load or strain control) fatigue experiments (fig. I). Duplicate
tests were performed at each of three test conditions. The mechanical test pa-
rameters were chosen to establish two lower-life LCFlevels (NIA & NIB)and one
higher-life HCFlevel (N2) for use in the two-level loading experiments. Two-
level block loading experiments (in which higher amplitude strain or load
cycling, corresponding to lower life levels, NIA and NIR) were conducted for
various life fractions, followed by load cycllng (corresponding to a higher fa-
tigue life level, Np) to failure (fig. 2). In these tests, LCF life fractions
(nlA/NIA and nlB/NIB)-Of approximately 0.1, 0.2, and 0.3 were applied and the HCF
life remaining in the second loading level was tsobserved. Twoseries of tes
were performed: one of the two baseline fatigue LCF life levels was used in the
first loading block, and the HCFbaseline loading level was used in the second
block in each series. For each series, duplicate tests were performed at each
applied LCF life fraction.

The results of the baseline fatigue characterization tests are shown in
figure 3. The lowest life tests were performed under strain control at 10 cpm,
AEt = 1.0 percent. A small amount of inelastic strain range, on the order of 0.1
percent, was observed. The balance of the tests was performed under load con-

trol, at 100 Hz, and nominally elastic behavior was observed. These results

agreed with results obtained by Pratt & Whitney (ref. 2).

The results of the two-level loading experiments are shown as cumulative

fatigue damage interaction plots (figs. 4 and 5). In figure 4, the LCF life

level, NIA corresponding to the first loading block was approximately 7000
cycles to failure. The second load level corresponded to approximately 107

cycles to failure (N) These life levels result from a consideration of the. 2 •
average of the fatigue lives obtained in the baseline fatigue characterization.

Also shown in the figure are predicted results based on a linear damage ap-

proach, and two nonlinear cumulative damage approaches, the Double Linear Damage

Rule (ref. i) and the Damage Curve Approach (ref. I). As can be observed, for

the three duplicated test conditions employed in this series, MAR M-247 exhibits

a very strong nonlinear cumulative interaction behavior. This behavior is pre-

dicted qualitatively based on the DCA and DLDR approaches. By contrast, pre-

dictions according to the LDR approach are in error by nearly a factor of 8 on

the unconservative side with respect to the experimental results (the remaining

HCF life is overpredicted by a factor of 33).

In figure 5, the LCF life level, NIB corresponding to the first block of
loading was approximately 340,000 cycles to failure. The second loading ]eveI

was as before. The experimental results are again shown with predictions made

according to both linear and nonlinear cumulative damage approaches. Nonline:_r

cumulative fatigue damage behavior is again exhibited. Predictions by the DCA

and DLDR models again are qualitatively correct for all but two of the result_

shown in this figure. The cumulative fatigue damage results in this figure do

show a bifurcation in behavior that has not previously been observed. The re-
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maining HCF lives are either shorter than expected, or substantially greater,

possibly indicating that the samples are from two separate populations of dif-

fering grain size, hardness, strength, etc. There is presently no physical evi-

dence to explain the behavior• The specimens are to be thoroughly examined at

MSFC using fractographic and metallographic techniques in anticipation of ex-

plaining the duality in behavior•
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Approach: Baseline Fatigue Behavior
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Approach: HCF/LCF Interaction Behavior

LCF/HCF loading pattern

LCF
+ HCF

Imposed _ITime

strain 0
Remaining

life

fraction,

n2/N 2

1.0

"I "%'''%

% LDR

"%

%%%%

%%%

,I
0.1.2.3 1.0

Initial life fraction, nl/N 1

• Two-level block loading tests run

• Three applied LCF life fractions designed to bracket
maximum expected nonlinear interaction

• Duplicate tests at each condition

Figure 2

Results: Baseline Fatigue Behavior
MAR M-247 in Air at Room Temperature
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Figure 4

Results: LCF/HCF Interaction Behavior

MAR M-247 Fatigue Interaction; N1 = 342 016; N2 = 11 136 861
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