Title	Generating Accurate and Consistent Top-of-Atmosphere Reflectance Products from the New Generation Geostationary Satellite Sensors			
Authors	Email	Last Name, First Name	Employer/Affiliation	
	weile.wang@nasa.gov	Wang, Weile	California State University - Monterey Bay	
	shuang.li@nasa.gov	Li, Shuang	Bay Area Environmental Research Institute	
	Hirofumi.hashimoto- 1@nasa.gov	Hashimoto, Hirofumi	California State University – Monterey Bay	
	Takenaka.hideaki@jaxa.jp	Takenaka, Hideaki	Japan Aerospace Exploration Agency, Sagamihara, Japan	
	Jennifer.I.dungan@nasa.gov	Dungan, Jennifer L.	NASA	
	Satya.lalluri@noaa.gov	Kalluri, Satya	National Oceanic and Atmospheric Administration (NOAA)	
	Rama.nemani@nasa.gov	Nemani, Ramakrishna R.	NASA	

Keywords Geostationary, GOES-R, Himawari-8, ABI, AHI, GeoNEX

Abstract	GeoNEX is a collaborative project by scientists from NASA, NOAA, JAXA, and other
	organizations around the world with the purpose of generating a suite of Earth-
	monitoring products using data streams from the latest geostationary (GEO) sensors
	including the GOES-16/17 ABI and the Himawari-8/9 AHI. An accurate and consistent
	top-of-atmosphere (TOA) reflectance product, in particular the bidirectional reflectance
	factor (BRF) is the starting point in the scientific processing chain. We describe the
	main considerations and corresponding algorithms in generating the GeoNEX TOA BRE
	product First a special advantage of geostationary data streams is their high temporal
	resolution (~10 minutes per full-disk scan), providing a key source of information for
	many downstream products. To fully utilize this high temporal frequency demands a
	high georegistration accuracy for every acquired image. Our analysis shows that there
	can be substantial georegistration uncertainties in both GOES and Himawari I 1b data
	which we addressed by implementing a phase-based correction algorithm to remove
	residual errors. Second, deostationary sensors have distinct illumination-view deometry
	features in that the solar angle changes for every pixel. Therefore, to accurately derive
	a RDE requires a solar position algorithm and the estimation of the pixel wise
	a BNF requires a solar position algorithm and the estimation of the pixel-wise
	acquisition time within an uncertainty of 10 seconds. Third, we discuss the measures
	we adopted to check and correct residual radiometric calibration issues of individual
	sensors to enable time-series analysis as well as the cross calibration between different
	satellite sensors (including those from low-Earth orbit). Finally, we also explain the
	rationale for the choice of the global grid/tile system of the GeoNEX TOA BRF product.

Event Name	AGU Fall Meeting 2019
Location	San Francisco, CA
Presentation Date	December 11, 2019
Presentation Sponsor	American Geophysical Union (AGU)
Presentation URL	https://agu.confex.com/agu/fm19/webprogrampreliminary/Paper513794.html