45 research outputs found

    Rapid microtubule-independent dynamics of Cdc20 at kinetochores and centrosomes in mammalian cells

    Get PDF
    Cdc20 is a substrate adaptor and activator of the anaphase-promoting complex/cyclosome (APC/C), the E3 ubiquitin ligase whose activity is required for anaphase onset and exit from mitosis. A green fluorescent protein derivative, Cdc20–GFP, bound to centrosomes throughout the cell cycle and to kinetochores from late prophase to late telophase. We mapped distinct domains of Cdc20 that are required for association with kinetochores and centrosomes. FRAP measurements revealed extremely rapid dynamics at the kinetochores (t1/2 = 5.1 s) and spindle poles (t1/2 = 4.7 s). This rapid turnover is independent of microtubules. Rapid transit of Cdc20 through kinetochores may ensure that spindle checkpoint signaling at unattached/relaxed kinetochores can continuously inhibit APC/CCdc20 targeting of anaphase inhibitors (securins) throughout the cell until all the chromosomes are properly attached to the mitotic spindle

    MYC-Induced miR-203b-3p and miR-203a-3p Control Bc1-xL Expression and Paclitaxel Sensitivity in Tumor Cells

    Get PDF
    Taxanes are chemotherapeutic agents used in the treatment of solid tumors, particularly of breast, ovarian, and lung origin. However, patients show divergent therapy responses, and the molecular determinants of taxane sensitivity have remained elusive. Especially the signaling pathways that promote death of the taxane-treated cells are poorly characterized. Here we describe a novel part of a signaling route in which c-Myc enhances paclitaxel sensitivity through upregulation of miR-203b-3p and miR-203a-3p; two clustered antiapoptosis protein BcI-xL controlling microRNAs. In vitro, the miR-203b-3p decreases the expression of BcI-xL by direct targeting of the gene's mRNA 3'UTR. Notably, overexpression of the miR-203b-3p changed the fate of paclitaxel-treated breast and ovarian cancer cells from mitotic slippage to cell death. In breast tumors, high expression of the miR-203b-3p and MYC was associated with better therapy response and patient survival. Interestingly, in the breast tumors, MYC expression correlated negatively with BCL2L1 expression but positively with miR-203b-3p and miR-203a-3p. Finally, silencing of MYC suppressed the transcription of both miRNAs in breast tumor cells. Pending further validation, these results may assist in patient stratification for taxane therapy.Peer reviewe

    VTT-006, an anti-mitotic compound, binds to the Ndc80 complex and suppresses cancer cell growth <i>in vitro</i>.

    Get PDF
    Hec1 (Highly expressed in cancer 1) resides in the outer kinetochore where it works to facilitate proper kinetochore-microtubule interactions during mitosis. Hec1 is overexpressed in various cancers and its expression shows correlation with high tumour grade and poor patient prognosis. Chemical perturbation of Hec1 is anticipated to impair kinetochore-microtubule binding, activate the spindle assembly checkpoint (spindle checkpoint) and thereby suppress cell proliferation. In this study, we performed high-throughput screen to identify novel small molecules that target the Hec1 calponin homology domain (CHD), which is needed for normal microtubule attachments. 4 million compounds were first virtually fitted against the CHD, and the best hit molecules were evaluated in vitro. These approaches led to the identification of VTT-006, a 1,2-disubstituted-tetrahydro-beta-carboline derivative, which showed binding to recombinant Ndc80 complex and modulated Hec1 association with microtubules in vitro. VTT-006 treatment resulted in chromosome congression defects, reduced chromosome oscillations and induced loss of inter-kinetochore tension. Cells remained arrested in mitosis with an active spindle checkpoint for several hours before undergoing cell death. VTT-006 suppressed the growth of several cancer cell lines and enhanced the sensitivity of HeLa cells to Taxol. Our findings propose that VTT-006 is a potential anti-mitotic compound that disrupts M phase, impairs kinetochore-microtubule interactions, and activates the spindle checkpoint

    Cenp-F (mitosin) is more than a mitotic marker

    No full text

    Multiple mechanisms of chromosome movement in vertebrate cells mediated through the Ndc80 complex and dynein/dynactin

    Get PDF
    Kinetochores bind microtubules laterally in a transient fashion and stably, by insertion of plus ends. These pathways may exist to carry out distinct tasks during different stages of mitosis and likely depend on distinct molecular mechanisms. On isolated chromosomes, we found microtubule nucleation/binding depended additively on both dynein/dynactin and on the Ndc80/Hec1 complex. Studying chromosome movement in living Xenopus cells within the simplified geometry of monopolar spindles, we quantified the relative contributions of dynein/dynactin and the Ndc80/Hec1 complex. Inhibition of dynein/dynactin alone had minor effects but did suppress transient, rapid, poleward movements. In contrast, inhibition of the Ndc80 complex blocked normal end-on attachments of microtubules to kinetochores resulting in persistent rapid poleward movements that required dynein/dynactin. In normal cells with bipolar spindles, dynein/dynactin activity on its own allowed attachment and rapid movement of chromosomes on prometaphase spindles but failed to support metaphase alignment and chromatid movement in anaphase. Thus, in prometaphase, dynein/dynactin likely mediates early transient, lateral interactions of kinetochores and microtubules. However, mature attachment via the Ndc80 complex is essential for metaphase alignment and anaphase A. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00412-007-0135-3) contains supplementary material, which is available to authorized users

    Identification of fibroblast growth factor-8b target genes associated with early and late cell cycle events in breast cancer cells

    No full text
    Fibroblast growth factor-8 (FGF-8) is implicated in the development and progression of breast cancer and its levels are frequently elevated in breast tumors. The mechanisms driving FGF-8-mediated tumorigenesis are not well understood. Herein we aimed to identify target genes associated with FGF-8b-mediated breast cancer cell proliferation by carrying out a cDNA microarray analysis of genes expressed in estrogen receptor negative S115 breast cancer cells treated with FGF-8b for various time periods in comparison with those expressed in non-treated cells. Gene and protein expression was validated for selected genes by qPCR and western blotting respectively. Furthermore, using TRANSBIG data, the expression of human orthologs of FGF-8-regulated genes was correlated to the Nottingham prognostic index and estrogen receptor status. The analysis revealed a number of significantly up- and down-regulated genes in response to FGF-8b at all treatment times. The most differentially expressed genes were genes related to cell cycle regulation, mitosis, cancer, and cell death. Several key regulators of early cell cycle progression such as Btg2 and cyclin D1, as well as regulators of mitosis, including cyclin B, Plk1, survivin, and aurora kinase A, were identified as novel targets for FGF-8b, some of which were additionally shown to correlate with prognosis and ER status in human breast cancer. The results suggest that in stimulation of proliferation FGF-8b not only promotes cell cycle progression through the G1 restriction point but also regulates key proteins involved in chromosomal segregation during mitosis and cytokinesis of breast cancer cells
    corecore