525 research outputs found

    Patients' and public views and attitudes towards the sharing of health data for research: a narrative review of the empirical evidence.

    Get PDF
    INTRODUCTION: International sharing of health data opens the door to the study of the so-called 'Big Data', which holds great promise for improving patient-centred care. Failure of recent data sharing initiatives indicates an urgent need to invest in societal trust in researchers and institutions. Key to an informed understanding of such a 'social license' is identifying the views patients and the public may hold with regard to data sharing for health research. METHODS: We performed a narrative review of the empirical evidence addressing patients' and public views and attitudes towards the use of health data for research purposes. The literature databases PubMed (MEDLINE), Embase, Scopus and Google Scholar were searched in April 2019 to identify relevant publications. Patients' and public attitudes were extracted from selected references and thematically categorised. RESULTS: Twenty-seven papers were included for review, including both qualitative and quantitative studies and systematic reviews. Results suggest widespread-though conditional-support among patients and the public for data sharing for health research. Despite the fact that participants recognise actual or potential benefits of data research, they expressed concerns about breaches of confidentiality and potential abuses of the data. Studies showed agreement on the following conditions: value, privacy, risk minimisation, data security, transparency, control, information, trust, responsibility and accountability. CONCLUSIONS: Our results indicate that a social license for data-intensive health research cannot simply be presumed. To strengthen the social license, identified conditions ought to be operationalised in a governance framework that incorporates the diverse patient and public values, needs and interests

    Insulating fcc YH3-ô stabilized by MgH2

    Get PDF
    We study the structural, optical, and electrical properties of MgzY1-z switchable mirrors upon hydrogenation. It is found that the alloys disproportionate into essentially pure YH3-δ and MgH2 with the crystal structure of YH3-δ dependent on the Mg concentration z. For 0~0.1 only cubic YH3-δ is present. Interestingly, cubic YH3-δ is expanded compared to YH2, in disagreement with theoretical predictions. From optical and electrical measurements we conclude that cubic YH3-δ is a transparent insulator with properties similar to hexagonal YH3-δ. Our results are inconsistent with calculations predicting fcc YH3-δ to be metallic, but they are in good agreement with recent GW calculations on both hcp and fcc YH3. Finally, we find an increase in the effective band gap of the hydrided MgzY1-z alloys with increasing z. Possibly this is due to quantum confinement effects in the small YH3 clusters

    Antimalarial treatment in infants.

    Get PDF
    INTRODUCTION: Malaria in infants is common in high-transmission settings, especially in infants >6 months. Infants undergo physiological changes impacting pharmacokinetics and pharmacodynamics of anti-malarial drugs and, consequently, the safety and efficacy of malaria treatment. Yet, treatment guidelines and evidence on pharmacological interventions for malaria often fail to address this vulnerable age group. This review aims to summarize the available data on anti-malarial treatment in infants. AREAS COVERED: The standard recommended treatments for severe and uncomplicated malaria are generally safe and effective in infants. However, infants have an increased risk of drug-related vomiting and have distinct pharmacokinetic parameters of antimalarials compared with older patients. These include larger volumes of distribution, higher clearance rates, and immature enzyme systems. Consequently, infants with malaria may be at increased risk of treatment failure and drug toxicity. EXPERT OPINION: Knowledge expansion to optimize treatment can be achieved by including more infants in antimalarial drug trials and by reporting separately on treatment outcomes in infants. Additional evidence on the efficacy, safety, tolerability, acceptability, and effectiveness of ACTs in infants is needed, as well as population pharmacokinetics studies on antimalarials in the infant population

    BRST Cohomology of N=2 Super-Yang-Mills Theory in 4D

    Full text link
    The BRST cohomology of the N=2 supersymmetric Yang-Mills theory in four dimensions is discussed by making use of the twisted version of the N=2 algebra. By the introduction of a set of suitable constant ghosts associated to the generators of N=2, the quantization of the model can be done by taking into account both gauge invariance and supersymmetry. In particular, we show how the twisted N=2 algebra can be used to obtain in a straightforward way the relevant cohomology classes. Moreover, we shall be able to establish a very useful relationship between the local gauge invariant polynomial trϕ2tr\phi^2 and the complete N=2 Yang-Mills action. This important relation can be considered as the first step towards a fully algebraic proof of the one-loop exactness of the N=2 beta function.Comment: 22 pages, LaTeX, final version to appear in Journ. Phys.

    Topological Yang-Mills Theory with Two Fermionic Charges. A Superfield Approach on K\"ahler Manifolds

    Full text link
    The four-dimensional topological Yang-Mills theory with two anticommuting charges is naturally formulated on K\"ahler manifolds. By using a superspace approach we clarify the structure of the Faddeev-Popov sector and determine the total action. This enables us to perform perturbation theory around any given instanton configuration by manifestly maintaining all the symmetries of the topological theory. The superspace formulation is very useful for recognizing a trivial observable (i.e. having vanishing correlation functions only) as the highest component of a gauge invariant superfield. As an example of non-trivial observables we construct the complete solution to the simultaneous cohomology problem of both fermionic charges. We also show how this solution has to be used in order to make Donaldson's interpretation possible.Comment: 41 pages, LaTeX. Section about Donaldson cohomology revised and completed. To be published in Nucl. Phys.

    Higgs Bundles, Gauge Theories and Quantum Groups

    Get PDF
    The appearance of the Bethe Ansatz equation for the Nonlinear Schr\"{o}dinger equation in the equivariant integration over the moduli space of Higgs bundles is revisited. We argue that the wave functions of the corresponding two-dimensional topological U(N) gauge theory reproduce quantum wave functions of the Nonlinear Schr\"{o}dinger equation in the NN-particle sector. This implies the full equivalence between the above gauge theory and the NN-particle sub-sector of the quantum theory of Nonlinear Schr\"{o}dinger equation. This also implies the explicit correspondence between the gauge theory and the representation theory of degenerate double affine Hecke algebra. We propose similar construction based on the G/GG/G gauged WZW model leading to the representation theory of the double affine Hecke algebra. The relation with the Nahm transform and the geometric Langlands correspondence is briefly discussed.Comment: 48 pages, typos corrected, one reference adde

    L-infinity algebra connections and applications to String- and Chern-Simons n-transport

    Full text link
    We give a generalization of the notion of a Cartan-Ehresmann connection from Lie algebras to L-infinity algebras and use it to study the obstruction theory of lifts through higher String-like extensions of Lie algebras. We find (generalized) Chern-Simons and BF-theory functionals this way and describe aspects of their parallel transport and quantization. It is known that over a D-brane the Kalb-Ramond background field of the string restricts to a 2-bundle with connection (a gerbe) which can be seen as the obstruction to lifting the PU(H)-bundle on the D-brane to a U(H)-bundle. We discuss how this phenomenon generalizes from the ordinary central extension U(1) -> U(H) -> PU(H) to higher categorical central extensions, like the String-extension BU(1) -> String(G) -> G. Here the obstruction to the lift is a 3-bundle with connection (a 2-gerbe): the Chern-Simons 3-bundle classified by the first Pontrjagin class. For G = Spin(n) this obstructs the existence of a String-structure. We discuss how to describe this obstruction problem in terms of Lie n-algebras and their corresponding categorified Cartan-Ehresmann connections. Generalizations even beyond String-extensions are then straightforward. For G = Spin(n) the next step is "Fivebrane structures" whose existence is obstructed by certain generalized Chern-Simons 7-bundles classified by the second Pontrjagin class.Comment: 100 pages, references and clarifications added; correction to section 5.1 and further example to 9.3.1 adde
    corecore