173 research outputs found

    Non-Magnetic Spinguides and Spin Transport in Semiconductors

    Full text link
    We propose the idea of a "spinguide", i.e. the semiconductor channel which is surrounded with walls from the diluted magnetic semiconductor (DMS) with the giant Zeeman splitting which are transparent for electrons with the one spin polarization only. These spinguides may serve as sources of a spin-polarized current in non-magnetic conductors, ultrafast switches of a spin polarization of an electric current and, long distances transmission facilities of a spin polarization (transmission distances can exceed a spin-flip length). The selective transparence of walls leads to new size effects in transport.Comment: 4 pages, 2 figure

    Angle-Resolved Spectroscopy of Electron-Electron Scattering in a 2D System

    Full text link
    Electron-beam propagation experiments have been used to determine the energy and angle dependence of electron-electron (ee) scattering a two-dimensional electron gas (2DEG) in a very direct manner by a new spectroscopy method. The experimental results are in good agreement with recent theories and provide direct evidence for the differences between ee-scattering in a 2DEG as compared with 3D systems. Most conspicuous is the increased importance of small-angle scattering in a 2D system, resulting in a reduced (but energy-dependent) broadening of the electron beam.Comment: 4 pages, 4 figure

    The role of innovative technologies in the modern teaching process of foreign students

    Get PDF
    МЕДИЦИНСКИЕ УЧЕБНЫЕ ЗАВЕДЕНИЯОБРАЗОВАНИЕ МЕДИЦИНСКОЕСТУДЕНТЫ МЕДИЦИНСКИХ УЧЕБНЫХ ЗАВЕДЕНИЙИНОСТРАННЫЕ СТУДЕНТЫУЧЕБНЫЙ ПРОЦЕССИННОВАЦИОННЫЕ ТЕХНОЛОГИ

    A Magnetic-Field-Effect Transistor and Spin Transport

    Full text link
    A magnetic-field-effect transistor is proposed that generates a spin-polarized current and exhibits a giant negative magnetoresitance. The device consists of a nonmagnetic conducting channel (wire or strip) wrapped, or sandwiched, by a grounded magnetic shell. The process underlying the operation of the device is the withdrawal of one of the spin components from the channel, and its dissipation through the grounded boundaries of the magnetic shell, resulting in a spin-polarized current in the nonmagnetic channel. The device may generate an almost fully spin-polarized current, and a giant negative magnetoresistance effect is predicted.Comment: 4 pages, 3 figure

    Single-electron shuttle based on electron spin

    Get PDF
    A nanoelectromechanical device based on magnetic exchange forces and electron spin flips induced by a weak external magnetic field is suggested. It is shown that this device can operate as a new type of single-electron "shuttle" in the Coulomb blockade regime of electron transport

    Effects of Electron-Electron Scattering on Electron-Beam Propagation in a Two-Dimensional Electron-Gas

    Full text link
    We have studied experimentally and theoretically the influence of electron-electron collisions on the propagation of electron beams in a two-dimensional electron gas for excess injection energies ranging from zero up to the Fermi energy. We find that the detector signal consists of quasiballistic electrons, which either have not undergone any electron-electron collisions or have only been scattered at small angles. Theoretically, the small-angle scattering exhibits distinct features that can be traced back to the reduced dimensionality of the electron system. A number of nonlinear effects, also related to the two-dimensional character of the system, are discussed. In the simplest situation, the heating of the electron gas by the high-energy part of the beam leads to a weakening of the signal of quasiballistic electrons and to the appearance of thermovoltage. This results in a nonmonotonic dependence of the detector signal on the intensity of the injected beam, as observed experimentally.Comment: 9 pages, 7 figure

    Loop cosmology: regularization vs. quantization

    Get PDF
    It is argued that it is the regularization of the classical Hamiltonian —the first step in loop cosmology in order to build a well-defined quantum theory— that is already able to avoid the Big Bang and Big Rip singularities, rather than the usually invoked quantum corrections coming from the quantization of the Hamiltonian. To prove such statement, the classical regularized Hamiltonian corresponding to loop gravity is obtained, and it is shown that it coincides, up to terms of order planck, with the so-called effective Hamiltonian which is calculated from the quantum regularized Hamiltonian using semi-classical techniques. From that comparison it is concluded that both types of singularities are avoided at the "classical level" already, i.e., using loop cosmology, in the sense that only the quantum nature of the geometry is invoked (the loop cut-off) in order to construct the regularized Hamiltonian and to fix the parameter on which it depends. Such finding constitutes a key manifestation of the intrinsic power of loop gravity, as compared with other alternatives

    Relaxation of high-energy quasiparticle distributions: electron-electron scattering in a two-dimensional electron gas

    Full text link
    A theory is developed for the evolution of the non-equilibrium distribution of quasiparticles when the scattering rate decreases due to particle collisions. We propose a "modified one-collision approximation" which is most effective for high-energy quasiparticle distributions. This method is used to explain novel measurements of the non-monotonic energy dependence of the signal of scattered electrons in a 2D system. The observed effect is related to a crossover from the ballistic to the hydrodynamic regime of electron flow.Comment: 6 pages, 3 figure

    Analysis of transients for NPP with VVER-440 using the code SiTAP

    Get PDF
    The report contains results of the analysis of the transients "Loop connection" and "SG tube rupture" for NPP with VVER-440 type reactors. To obtain detailled informations about NPP's dynamic characteristics, various variants of initial and boundary conditions are considered. Calculation of these transients was performed with use of the code SiTAP developed at the Nuclear Safety Institute of Russian Research Centre "Kurchatov Institute". SiTAP is a multi-functional computer tool for fast analysis of transient and accidental processes of VVER type reactors for engineers working in the field of NPP dynamics. SiTAP can be used for comparative analysis of several variants of accident scenarios to find out the conditions leading to the most severe consequences from safety point of view. For this cases, additional analyses using best-estimate codes should be carried out. The results from SiTAP for faulty loop connection leading to a boron dilution accident are intended to be used as boundary conditions for a more detailled analysis by the help of the three-dimensional reactor core model DYN3D, developed in the Research Centre Rossendorf for the simulation of reactivity initiated accidents
    corecore