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It is argued that it is the regularization of the classical Hamiltonian—first step in loop

cosmology in order to build a well-defined quantum theory—what is already able to avoid

the Big Bang and Big Rip singularities, rather than the usually invoked quantum corrections

coming from the quantization of the Hamiltonian. To prove such statement, the classical

regularized Hamiltonian corresponding to loop gravity is obtained, and it is shown that it

coincides, up to terms of order ~, with the so-called effective Hamiltonian which is cal-

culated from the quantum regularized Hamiltonian using semi-classical techniques. From

that comparison it is concluded that both types of singularities are avoided at the “classical

level” already, i.e., using loop cosmology, in the sense that, only the quantum nature of the

geometry is invoked (the loop cut off) in order to construct the regularized Hamiltonian and

to fix the parameter on which it depends. Such finding constitutes a key manifestation of the

intrinsic power of loop gravity, as compared with other alternatives.

PACS numbers: 98.80.Jk, 98.80.Qc, 04.60.Pp, 04.60.Ds

I. INTRODUCTION

In this paper we review some features used in loop quantum cosmology (LQC) to get rid of the

classical Big Bang and Big Rip singularities in Friedmann-Robertson-Walker (FWR) cosmologies.

We will show in what follows that, using the classical regularized Hamiltonian introduced in loop

gravity in order to construct a well-defined quantum theory [1–4], these singularities are already
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avoided, without the need to quantify this Hamiltonian. To prove such statement, that may come as

a surprise, we first review the so-called old quantization of loop quantum cosmology [5, 6] based on

holonomies of the form hj(µ) ≡ e−i µx
2c

σj [7], where σj are the Pauli matrices, c denotes the velocity

of light, µ is a dimensionless parameter, and x ≡ ιȧ, being ι the Barbero-Immirzi parameter and ȧ

the scale factor velocity. To fix the value of the parameter µ one can use the quantum nature of the

geometry (the minimum eigenvalue of the area operator introduced in loop quantum geometry), and

it is at this very point when the quantum nature of the geometry explicitly appears. In this framework

we obtain, at the classical level (i.e. using the regularized Hamiltonian without quantizing it in any

way), the modified Friedmann equation that has no Big Bang singularity for barotropic fluids with an

equation of state p = ωρ satisfying ω > −1/3.

To avoid the Big Bang singularity, for all values of ω for which this singularity appears in the

standard cosmology (that is, for ω > −1) one has to introduce new phase-space variables, namely

V ≡ a3 and β ≡ ιȧ/a [8, 9], and the holonomies hj(µ) ≡ e−i λβ
2c

σj , where λ is here a parameter with

the dimensions of length, which we fix in the same way as the parameter µ, that is, using the quantum

nature of the geometry. With these variables, and using the regularized Hamiltonian just at the clas-

sical level, one obtains a new modified Friedmann equation where it can be shown explicitly that the

Big Bang singularity is completely avoided. Moreover, using this modified Friedmann equation, it is

also possible to prove that, when ω < −1, the corresponding Big Rip singularity can be avoided too

[10–12].

We must stress the fact that both types of singularities are explicitly resolved just resorting to the

classical regularized Hamiltonian. It is then rather clear that in the quantum version of the theory,

that is, using the quantum Hamiltonian in LQC, the same features will emerge as in the classical one

(the same results of the classical theory will be obtained, only with small modifications, of order ~)

and, clearly, the singularities will also be absent here. In particular, using semi-classical techniques,

coherent states, etc. [9, 13–15], an effective Hamiltonian is obtained from the quantum regularized

Hamiltonian which explicitly coincides—up to modifications of order ~—with the classical regu-

larized one. This is perhaps the reason why it was plainly concluded before that quantum effects,

provided by LQC—that is, the effects due to the quantization of the regularized Hamiltonian—were

the ones actually responsible for suppressing the singularity (see for example [4, 7, 16] etc.). It is

thus important to stress the following consequence of our study: the reason the singularities do not

appear in LQC is because they already do not show up in the classical, regularized theory, i.e., in loop
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cosmology.

II. OLD QUANTIZATION OF LOOP QUANTUM COSMOLOGY

In the old quantization of LQC one considers the canonically conjugate variables p ≡ a2 and

x ≡ ιȧ where ι is the Barbero-Immirzi parameter. Their Poisson bracket is {x, p} = 8πGι
3c2

= 2ι
γ2 ,

where the parameter γ2 ≡ 3c2

4πG
= 3~

4πcl2p
has been introduced (being G Newton’s constant and lp the

Planck length). One also considers the holonomies hj(µ) ≡ e−i µx
2c

σj = cos(µx
2c

) − iσj sin(µx
2c

) [7],

where σj are the Pauli matrices, c denotes the velocity of light, and µ is a dimensionless parameter.

The key step in our procedure is the following. To get the gravitational part of the Hamiltonian, in

the flat case, one cannot directly use the rather obvious one: Hgrav = − 3c2

8πGι2
x2√p, which actually

leads to singular classical dynamics, because in LQC the operator x̂2 is not well-defined in the corres-

ponding Hilbert space which is characterized by the fact that a generic element on it can be expanded

as a countable sum of almost periodic functions of x of the form eiβx/2, where β is a real number.

Then, since x2 has not a well-defined quantum operator (in the correspondence principle), in order

to construct an admissible quantum Hamiltonian operator one needs an almost periodic function of

x which approaches x2 for small values of x. This can be actually constructed by using the general

formulae of loop gravity that express the Hamiltonian in terms of holonomies and the variable p [2–4]:

Hgrav,reg ≡ − ~2c

32π2l4pι
3µ3

∑

i,j,k

εijkTr
[
hi(µ)hj(µ)h−1

i (µ)

×h−1
j (µ)hk(µ){h−1

k (µ), p3/2}] = −γ2c2

2ι2
a sin2 µx

c
. (1)

Note that this regularized Hamiltonian coincides, up to order ~, with the so-called effective Hamil-

tonian obtained from the quantum regularized Hamiltonian after use of the WKB approximation, path

integral, or coherent state techniques [16]. But what is here to be remarked is that, in all papers devo-

ted to the study of LQC, the authors start with the quantum version of the regularized Hamiltonian (a

discrete theory) and then, in order to obtain a continuous one, they calculate via WKB approximation,

or the like, the effective Hamiltonian which is, up to order ~, equal to −γ2c2

2ι2
a sin2 µx

c
. We believe that

this hard work could be avoided, and that can even produce some confusion, because it seems to in-

dicate that the only way to describe the features of LQC within a continuous theory is to consider the

effective Hamiltonian obtained from the quantum version of the theory (see for example [7, 16]).
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Taking now this regularized Hamiltonian as the gravitational part of the full one, the complete

Hamiltonian is given by

Hreg ≡ − γ2c2

2ι2µ2
a sin2 µx

c
+ a3ρ(a), (2)

where ρ(a) is the matter density. The scalar factor satisfies the dynamic equation

ȧ = {a,Hreg} =
c

2ιµ
sin

2µx

c
, (3)

and imposing now the Hamiltonian constraint, Hreg = 0, we obtain the following modified Friedmann

equation

ȧ2

a2
=

2ρ

γ2

(
1− ρ(a)

ρc(a)

)
, (4)

with the critical density being

ρc(a) ≡ γ2c2

2ι2µ2a2
=

3~c
8πι2µ2a2l2p

=
3c4

8πι2µ2Ga2
. (5)

Here a remark is in order. To obtain a value for the parameter µ, one quantizes the variables x and

p as: x̂ = x and p̂ = −i~ 2ι
γ2 ∂x. Since an eigenfunction of the operator p̂ is e−

iµx
2c , with eigenvalue

~ιµ
cγ2 , then, by identifying this eigenvalue with the minimum eigenvalue of the area operator in loop

quantum gravity (LQG), which is 2
√

3πιl2p, one obtains µ = 3
√

3
2

[4]. Note that we have actually fixed

the value of µ just by invoking the quantum nature of the geometry, but what we have not done yet is

to quantify the regularized Hamiltonian.

An important case, already discussed in [4], is when one considers a massless scalar field φ. In

this case the density is given by ρ(a) =
pφ

2a6 , where the constant pφ is the momentum of the field. It is

well-known that using the Friedmann equation one obtains a Big Bang singularity, however, using the

modified one it is easy to show that the universe bounces (ȧ = 0) at a =
√

|pφ|ι3
√

3

2γc
and, consequently,

that there is no Big Bang singularity, because the range of a(t) is
[√

|pφ|ι3
√

3

2γc
, +∞

)
,∀t ∈ R. In fact,

for earlier times the scalar factor is very big, then it decreases and, when it arrives at the turning value,

it finally increases forever.

To properly compare with previous work, a second remark is in order. In [4], the modified Fried-

mann equation was modified once again, with the aim to obtain a constant critical density. To do

this, the authors considered the critical density at the bouncing point ρbounce ≡ ρc

(√
|pφ|ι3

√
3

2γc

)
=
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(
3c4

8πGι2µ2

)3/2 √
2

|pφ| , and modified the Friedmann equation as follows:

ȧ2

a2
=

2ρ

γ2

(
1− ρ(a)

ρbounce

)
. (6)

Now, we consider the general case of a barotropic fluid with an equation of state p = ωρ. Then,

the density is given by ρ(a) = ρ0 (a/a0)
−3(ω+1). The modified Friedmann equation tells us that the

following relation must be satisfied ρc(a) ≥ ρ(a), which shows that, when ω > −1/3, the scale

factor belongs in the domain [abounce,∞), where we have defined abounce ≡
(

2ι2µ2ρ0a
3(ω+1)
0

γ2c2

) 1
3ω+1

.

This means that the Big Bang singularity that appears in classical cosmology when one considers a

barotropic fluid with ω > −1 is actually avoided by using loop cosmology, for ω > −1/3.

Finally we want to stress the noticeable fact that all results here obtained are at the classical

level (followed by proper regularization). We have not used a quantized Hamiltonian to obtain the

bounces, but only the quantum nature of the geometry in order to build the regularized Hamiltonian

that depends on a parameter, and to fix this one. The quantum Hamiltonian theory will probably

reproduce, in an approximate way (with corrections of order ~) all these results, in particular, the

right bounces. Of course the situation is not completely clear at this stage, since we have not taken

into account the possible role of additional quantum corrections and it is not possible to know if, in

the proximity of the bounce, all of them can still be kept small. But what is really important from

the considerations above is to understand that, in order to get rid of the singularities, the regularized

Hamiltonian of loop gravity suffices, and there is no need to invoke the full quantum version of the

theory.

III. NEW PHASE SPACE VARIABLES IN LOOP QUANTUM COSMOLOGY

We have shown above that, when one considers a barotropic fluid with equation of state p = ωρ,

the Big Bang singularity is absent from loop cosmology for any ω > −1/3. However, it is well-known

that, in standard cosmology, the Big Bang appears for ω > −1. In order to avoid that singularity in

LQC for all possible values of ω and to remove a problem that appears in the old quantization of LQC

(for details, see [8, 9]), one needs to introduce new canonically conjugate variables, namely V ≡ a3

and β ≡ ιȧ/a, which satisfy {β, V } = 3ι
γ2 [8, 9]. And, also, to consider the holonomies hj(λ) ≡

e−i λβ
2c

σj , where now λ is a parameter with dimensions of length, which is determined invoking the
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quantum nature of the geometry, that is, identifying it with the minimum eigenvalue of the area

operator in LQG λ ≡
√

2
√

3πι lp.

Once again, one may use the general formulae of loop gravity to obtain the gravitational regulari-

zed Hamiltonian in the flat case [2–4]:

Hgrav,reg ≡ − ~2c

32π2l4pι
3

V

λ3

∑

i,j,k

εijkTr
[
hi(λ)hj(λ)h−1

i (λ)

×h−1
j (λ)hk(λ){h−1

k (λ), V }] = − γ2c2

2ι2λ2
V sin2 λβ

c
. (7)

Then, taking this regularized Hamiltonian as the gravitational part of the full one, the complete Ha-

miltonian will be given by [8]

Hreg ≡ − γ2c2

2ι2λ2
V sin2 λβ

c
+ ρ(a)V, (8)

which coincides with the classical one, namely H ≡ −γ2
2
ȧ2a + ρ(a)a3, when λ → 0.

The dynamical equation for the scalar factor reads

ȧ = {a,Hreg} =
ca

2λι
sin

2λβ

c
. (9)

Imposing the Hamiltonian constraint, Hreg = 0, we obtain the following modified Friedmann equa-

tion

ȧ2

a2
=

2ρ

γ2

(
1− ρ(a)

ρc

)
, (10)

where now the critical density is a constant, with value

ρc ≡ γ2c2

2λ2ι2
=

√
3~c

16π2ι3l4p
=

√
3c7

16π2ι3G2~
. (11)

Note that the modified Friedmann equation (10) is actually invariant under the scaling a → Ca, what

is a very essential property of flat FRW space-time. The same does not happen, however, with Eq. (4),

this being one of the main shortcomings of the old quantization.

From (10) it follows that, for ω > −1, the scalar factor belongs in the domain [abounce,∞), with

abounce ≡
(

2ι2λ2ρ0a
3(ω+1)
0

γ2c2

) 1
3(ω+1)

, what means that the Big Bang singularity which appears in classical

cosmology for a barotropic fluid with ω > −1 will be absent, for all values of ω, in the framework

of regularized loop cosmology, provided the new variables are used. Moreover, also with the use of
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these new variables, it was seen in [10–12] that, when one considers a barotropic fluid with ω < −1,

the Big Rip singularity is avoided too. In order to prove this, note that from (10) we have ρc > ρ(a),

and then a <
(

ρc

ρ0
a

3|ω+1|
0

) 1
3|ω+1|

, what completes our statement.

To summarize, we have rigorously proven in loop gravity, for the cases explicitly considered, that

using the classical regularized Hamiltonian one is able to avoid the singularities. No quantization

of the Hamiltonian was actually used above, only the quantum nature of the geometry was invoked

(the loop, or area operator, cut off) in order to construct the regularized Hamiltonian and to fix the

parameter on which it depends. This is quite different from the quantum effective formulation for

FRW cosmologies as discussed in [17], or from Schutz’s formalism as applied to quantum cosmolo-

gical fluids [18–20], where one does quantize the Hamiltonian in order to be free from singularities.

It is important to realize, once more, that it is the regularization of the classical gravitational Hamil-

tonian introduced in loop gravity what avoids the singularities, rather than the quantum effects due

to its quantization. This has been overlooked in several papers, where it was claimed that quantum

effects, provided by the quantum Hamiltonian, were in fact essential in order to avoid the singularities

[4, 8, 10, 12]. Note that in these approximations the authors start, from the very beginning, from the

quantum theory and then, using semi-classical techniques, coherent states techniques, etc. an effec-

tive Hamiltonian is obtained [9, 13–15] which, in fact, coincides in essence with our Hamiltonian (8).

This is maybe the reason why it was plainly concluded in those papers that quantum effects provided

by the quantum Hamiltonian in LQC were the ones responsible for avoiding the singularities, what

we have here proven not to be the case.

IV. CONCLUSION

We have shown in this paper that it is the regularization of the classical Hamiltonian performed in

loop gravity what is already able to avoid the important singularities of the initial theory, rather than

quantum effects arising after the quantization of the Hamiltonian. In this sense, one can say that what

actually resolves the Big Bang and the Big Rip singularities is just the regularized loop cosmology,

rather than the quantum version (LQC). Such finding, far from being a draw back, constitutes a key

manifestation of the intrinsic potential of loop gravity, as compared with competing theories. In

other words, the capability to avoid the singularities actually lies in the loop-cosmology (geometrical)

paradigm itself, what makes this theory even more powerful than it had been thought to be.
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