37 research outputs found

    Advances in tenascin-C biology

    Get PDF
    Tenascin-C is an extracellular matrix glycoprotein that is specifically and transiently expressed upon tissue injury. Upon tissue damage, tenascin-C plays a multitude of different roles that mediate both inflammatory and fibrotic processes to enable effective tissue repair. In the last decade, emerging evidence has demonstrated a vital role for tenascin-C in cardiac and arterial injury, tumor angiogenesis and metastasis, as well as in modulating stem cell behavior. Here we highlight the molecular mechanisms by which tenascin-C mediates these effects and discuss the implications of mis-regulated tenascin-C expression in driving disease pathology

    The role of tenascin-C in tissue injury and tumorigenesis

    Get PDF
    The extracellular matrix molecule tenascin-C is highly expressed during embryonic development, tissue repair and in pathological situations such as chronic inflammation and cancer. Tenascin-C interacts with several other extracellular matrix molecules and cell-surface receptors, thus affecting tissue architecture, tissue resilience and cell responses. Tenascin-C modulates cell migration, proliferation and cellular signaling through induction of pro-inflammatory cytokines and oncogenic signaling molecules amongst other mechanisms. Given the causal role of inflammation in cancer progression, common mechanisms might be controlled by tenascin-C during both events. Drugs targeting the expression or function of tenascin-C or the tenascin-C protein itself are currently being developed and some drugs have already reached advanced clinical trials. This generates hope that increased knowledge about tenascin-C will further improve management of diseases with high tenascin-C expression such as chronic inflammation, heart failure, artheriosclerosis and cancer

    Interleukin-1 has opposing effects on connective tissue growth factor and tenascin-C expression in human cardiac fibroblasts.

    No full text
    Cardiac fibroblasts (CF) play a central role in the repair and remodeling of the heart following injury and are important regulators of inflammation and extracellular matrix (ECM) turnover. ECM-regulatory matricellular proteins are synthesized by several myocardial cell types including CF. We investigated the effects of pro-inflammatory cytokines on matricellular protein expression in cultured human CF. cDNA array analysis of matricellular proteins revealed that interleukin-1Ξ± (IL-1Ξ±, 10ng/ml, 6h) down-regulated connective tissue growth factor (CTGF/CCN2) mRNA by 80% and up-regulated tenascin-C (TNC) mRNA levels by 10-fold in human CF, without affecting expression of thrombospondins 1-3, osteonectin or osteopontin. Western blotting confirmed these changes at the protein level. In contrast, tumor necrosis factor Ξ± (TNFΞ±) did not modulate CCN2 expression and had only a modest stimulatory effect on TNC levels. Signaling pathway inhibitor studies suggested an important role for the p38 MAPK pathway in suppressing CCN2 expression in response to IL-1Ξ±. In contrast, multiple signaling pathways (p38, JNK, PI3K/Akt and NFΞΊB) contributed to IL-1Ξ±-induced TNC expression. In conclusion, IL-1Ξ± reduced CCN2 expression and increased TNC expression in human CF. These observations are of potential value for understanding how inflammation and ECM regulation are linked at the level of the CF

    Helicobacter pylori eradication in duodenal ulcer disease is cost-beneficial: A belgian model

    No full text
    SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Involvement of Large Tenascin-C Splice Variants in Breast Cancer Progression

    No full text
    Alternative splicing of fibronectin-like type III (FNIII) repeats of tenascin-C (Tn-C) generates a number of splice variants. The distribution of large variants, typical components of provisional extracellular matrices that are up-regulated during tumor stroma remodeling, was here studied by immunoblotting and immunohistochemistry using a monoclonal antibody against the FNIII B domain (named 4C8MS) in a series of human breast cancers. Large Tn-C variants were found at only low levels in normal breast tissues, but were highly expressed at invading sites of intraductal cancers and in the stroma of invasive ductal cancers, especially at invasion fronts. There was a positive correlation between the expression of large Tn-C variants and the cell proliferation rate determined by immunolabeling of the Ki-67 antigen. Of the Tn-C recombinant fragments (all FNIII repeats or mFNIII FL, the conserved FNIII domain only, the epidermal growth factor-like domain, and the fibrinogen-like domain) which were expressed by CHO-K1 cells transfected with mouse Tn-C cDNAs, only the mFNIII FL enhanced in vitro migration and mitotic activity of mammary cancer cells derived from a Tn-C-null mouse. Addition of 4C8MS blocked the function of mFNIII FL. These findings provide strong evidence that the FNIII alternatively spliced region has important roles in tumor progression of breast cancer
    corecore