991 research outputs found

    Towards a direct transition energy measurement of the lowest nuclear excitation in 229Th

    Full text link
    The isomeric first excited state of the isotope 229Th exhibits the lowest nuclear excitation energy in the whole landscape of known atomic nuclei. For a long time this energy was reported in the literature as 3.5(5) eV, however, a new experiment corrected this energy to 7.6(5) eV, corresponding to a UV transition wavelength of 163(11) nm. The expected isomeric lifetime is τ=\tau= 3-5 hours, leading to an extremely sharp relative linewidth of Delta E/E ~ 10^-20, 5-6 orders of magnitude smaller than typical atomic relative linewidths. For an adequately chosen electronic state the frequency of the nuclear ground-state transition will be independent from influences of external fields in the framework of the linear Zeeman and quadratic Stark effect, rendering 229mTh a candidate for a reference of an optical clock with very high accuracy. Moreover, in the literature speculations about a potentially enhanced sensitivity of the ground-state transition of 229m^{229m}Th for eventual time-dependent variations of fundamental constants (e.g. fine structure constant alpha) can be found. We report on our experimental activities that aim at a direct identification of the UV fluorescence of the ground-state transition energy of 229mTh. A further goal is to improve the accuracy of the ground-state transition energy as a prerequisite for a laser-based optical control of this nuclear excited state, allowing to build a bridge between atomic and nuclear physics and open new perspectives for metrological as well as fundamental studies

    Geometric Laws of Vortex Quantum Tunneling

    Full text link
    In the semiclassical domain the exponent of vortex quantum tunneling is dominated by a volume which is associated with the path the vortex line traces out during its escape from the metastable well. We explicitly show the influence of geometrical quantities on this volume by describing point vortex motion in the presence of an ellipse. It is argued that for the semiclassical description to hold the introduction of an additional geometric constraint, the distance of closest approach, is required. This constraint implies that the semiclassical description of vortex nucleation by tunneling at a boundary is in general not possible. Geometry dependence of the tunneling volume provides a means to verify experimental observation of vortex quantum tunneling in the superfluid Helium II.Comment: 4 pages, 2 figures, revised version to appear in Phys. Rev.

    Effects of a torsion field on Big Bang nucleosynthesis

    Full text link
    In this paper it is investigated whether torsion, which arises naturally in most theories of quantum gravity, has observable implications for the Big Bang nucleosynthesis. Torsion can lead to spin flips amongst neutrinos thus turning them into sterile neutrinos. In the early Universe they can alter the helium abundance which is tightly constrained by observations. Here I calculate to what extent torsion of the string theory type leads to a disagreement with the Big Bang nucleosynthesis predictions.Comment: accepted by General Relativity and Gravitatio

    Caregiver perspectives on the continued impact of the COVID-19 pandemic on children with intellectual/developmental disabilities

    Get PDF
    The COVID-19 pandemic has significantly impacted caregivers, especially those raising a child with an intellectual/developmental disability (IDD). While research has shown substantial disruption to the family, school, and occupational lives of the IDD community, little is known about the long-term impacts of COVID-19. To address this question, 249 caregivers were surveyed via an online questionnaire, between April and August of 2022 (more than 2 years into the pandemic) about potential impacts of the COVID-19 pandemic on their child\u27s access to health- and school-based therapeutic services, caregiver mental health, and family life. The majority of caregivers reported disruptions in access to and quality of school-based therapeutic services for their child as well as a reduction in educational accommodations in the 2021-2022 academic year. Nearly half of caregivers reported feeling anxious and almost a quarter reported feeling depressed for the majority of their days. More than half of respondents reported decreased social support, and one-fifth reported employment disruptions and decreased access to food. These findings suggest that families of children with IDD are still experiencing ongoing negative impacts of the pandemic, emphasizing the critical need for continued support in the wake of the initial and more obvious disruptions caused by the COVID-19 outbreak

    Fractional Statistics in Three Dimensions: Compact Maxwell-Higgs System

    Get PDF
    We show that a (3+1)-dimensional system composed of an open magnetic vortex and an electrical point charge exhibits the phenomenon of Fermi-Bose transmutation. In order to provide the physical realization of this system we focus on the lattice compact scalar electrodynamics SQEDcSQED_c whose topological excitations are open Nielsen-Olesen strings with magnetic monopoles attached at their ends.Comment: 8 page

    Quantization of massive Abelian antisymmetric tensor field and linear potential

    Get PDF
    We discuss a quantum-theoretical aspect of the massive Abelian antisymmetric tensor gauge theory with antisymmetric tensor current. To this end, an Abelian rank-2 antisymmetric tensor field is quantized both in the covariant gauge with an arbitrary gauge parameter and in the axial gauge of the Landau type. The covariant quantization yields the generating functional written in terms of an antisymmetric tensor current and its divergence. Origins of the terms in the generating functional are clearly understood in comparison with the quantization in the unitary gauge. The quantization in the axial gauge with a suitable axis directly yields the generating functional which is same as that obtained by using Zwanziger's formulation for electric and magnetic charges. It is shown that the generating functionals lead to a composite of the Yukawa and the linear potentials.Comment: 21pages, no figures, to appear in Modern Physics Letters

    Characteristic cohomology of pp-form gauge theories

    Full text link
    The characteristic cohomology Hchark(d)H^k_{char}(d) for an arbitrary set of free pp-form gauge fields is explicitly worked out in all form degrees k<n1k<n-1, where nn is the spacetime dimension. It is shown that this cohomology is finite-dimensional and completely generated by the forms dual to the field strengths. The gauge invariant characteristic cohomology is also computed. The results are extended to interacting pp-form gauge theories with gauge invariant interactions. Implications for the BRST cohomology are mentioned.Comment: Latex file, no figures, 44 page

    Vacuum Structure and the Axion Walls in Gluodynamics and QCD with Light Quarks

    Get PDF
    Large N gluodynamics was shown to have a set of metastable vacua with the gluonic domain walls interpolating between them. The walls may separate the genuine vacuum from an excited one, or two excited vacua which are unstable at finite N (here N is the number of colors). One may attempt to stabilize them by switching on the axion field. We study how the light quarks and the axion affect the structure of the domain walls. In pure gluodynamics (with the axion field) the axion walls acquire a very hard gluonic core. Thus, we deal with a wall "sandwich" which is stable at finite N. In the case of the minimal axion, the wall "sandwich" is in fact a "2-pi" wall, i.e., the corresponding field configuration interpolates between identical hadronic vacua. The same properties hold in QCD with three light quarks and very large number of colors. However, in the realistic case of three-color QCD the phase corresponding to the axion field profile in the axion wall is screened by a dynamical phase associated with the eta-prime, so that the gluon component of the wall is not excited. We propose a toy Lagrangian which models these properties and allows one to get exact solutions for the domain walls.Comment: 22 pages Latex, no figure

    Extraction of BoNT/A, /B, /E, and /F with a Single, High Affinity Monoclonal Antibody for Detection of Botulinum Neurotoxin by Endopep-MS

    Get PDF
    Botulinum neurotoxins (BoNTs) are extremely potent toxins that are capable of causing respiratory failure leading to long-term intensive care or death. The best treatment for botulism includes serotype-specific antitoxins, which are most effective when administered early in the course of the intoxication. Early confirmation of human exposure to any serotype of BoNT is an important public health goal. In previous work, we focused on developing Endopep-MS, a mass spectrometry-based endopeptidase method for detecting and differentiating the seven serotypes (BoNT/A-G) in buffer and BoNT/A, /B, /E, and /F (the four serotypes that commonly affect humans) in clinical samples. We have previously reported the success of antibody-capture to purify and concentrate BoNTs from complex matrices, such as clinical samples. However, to check for any one of the four serotypes of BoNT/A, /B, /E, or /F, each sample is split into 4 aliquots, and tested for the specific serotypes separately. The discovery of a unique monoclonal antibody that recognizes all four serotypes of BoNT/A, /B, /E and /F allows us to perform simultaneous detection of all of them. When applied in conjunction with the Endopep-MS assay, the detection limit for each serotype of BoNT with this multi-specific monoclonal antibody is similar to that obtained when using other serotype-specific antibodies
    corecore