147 research outputs found

    Classical T-Tauri stars with VPHAS+: II: NGC 6383 in Sh 2-012

    Full text link
    This paper presents optical (ugriugriHα\alpha)-infrared (JHKJHKs,3.6--8.0μ\mum) photometry, and GaiaGaia astrometry of 55 Classical T-Tauri stars (CTTS) in the star-forming region Sh 2-012, and it's central cluster NGC 6383. The sample was identified based on photometric Hα\alpha emission line widths, and has a median age of 2.8±\pm1.6 Myr, with a mass range between 0.3-1 MM_{\odot}. 94% of CTTS with near-infrared cross-matches fall on the near-infrared T-Tauri locus, with all stars having mid-infrared photometry exhibiting evidence for accreting circumstellar discs. CTTS are found concentrated around the central cluster NGC 6383, and towards the bright rims located at the edges of Sh 2-012. Stars across the region have similar ages, suggestive of a single burst of star formation. Mass accretion rates (M˙acc\dot{M}_{\textrm{acc}}) estimated via Hα\alpha and uu-band line intensities show a scatter (0.3 dex) similar to spectroscopic studies, indicating the suitability of Hα\alpha photometry to estimate M˙acc\dot{M}_{\textrm{acc}}. Examining the variation of M˙acc\dot{M}_{\textrm{acc}} with stellar mass (MM_{\ast}), we find a smaller intercept in the M˙acc\dot{M}_{\textrm{acc}}-MM_{\ast} relation than oft-quoted in the literature, providing evidence to discriminate between competing theories of protoplanetary disc evolution.Comment: Accepted for publication in MNRAS; 12 pages, 9 figures; Table 1 is published in electronic form only along with the source cod

    The Magellanic Bridge cluster NGC 796: Deep optical AO imaging reveals the stellar content and initial mass function of a massive open cluster

    Full text link
    NGC 796 is a massive young cluster located 59 kpc from us in the diffuse intergalactic medium of the 1/5-1/10 ZZ_{\odot} Magellanic Bridge, allowing to probe variations in star formation and stellar evolution processes as a function of metallicity in a resolved fashion, providing a link between resolved studies of nearby solar-metallicity and unresolved distant metal-poor clusters located in high-redshift galaxies. In this paper, we present adaptive optics grigriHα\alpha imaging of NGC 796 (at 0.5", which is ~0.14 pc at the cluster distance) along with optical spectroscopy of two bright members to quantify the cluster properties. Our aim is to explore if star formation and stellar evolution varies as a function of metallicity by comparing the properties of NGC 796 to higher metallicity clusters. We find from isochronal fitting of the cluster main sequence in the colour-magnitude diagram an age of 205+12^{+12}_{-5} Myr. Based on the cluster luminosity function, we derive a top-heavy stellar initial mass function (IMF) with a slope α\alpha = 1.99±\pm0.2, hinting at an metallicity and/or environmental dependence of the IMF which may lead to a top-heavy IMF in the early Universe. Study of the Hα\alpha emission line stars reveals that Classical Be stars constitute a higher fraction of the total B-type stars when compared with similar clusters at greater metallicity, providing some support to the chemically homogeneous theory of stellar evolution. Overall, NGC 796 has a total estimated mass of 990±200\pm200 MM_{\odot}, and a core radius of 1.4±\pm0.3 pc which classifies it as a massive young open cluster, unique in the diffuse interstellar medium of the Magellanic Bridge.Comment: Accepted for publication in the Astrophysical Journal. Contains 14 pages, 11 figures, and 3 table

    Pre-main sequence accretion in the low metallicity Galactic star-forming region Sh 2-284

    Full text link
    We present optical spectra of pre-main sequence (PMS) candidates around the Hα\alpha region taken with the Southern African Large Telescope, SALT, in the low metallicity (ZZ) Galactic region Sh 2-284, which includes the open cluster Dolidze 25 with an atypical low metallicity of ZZ \sim 1/5 ZZ_{\odot}. It has been suggested on the basis of both theory and observations that PMS mass-accretion rates, M˙acc\dot M_{\rm{acc}}, are a function of ZZ. We present the first sample of spectroscopic estimates of mass-accretion rates for PMS stars in any low-ZZ star-forming region. Our data-set was enlarged with literature data of Hα\alpha emission in intermediate-resolution R-band spectroscopy. Our total sample includes 24 objects spanning a mass range between 1 - 2 MM_{\odot} and with a median age of approximately 3.5 Myr. The vast majority (21 out of 24) show evidence for a circumstellar disk on the basis of 2MASS and Spitzer infrared photometry. We find M˙acc\dot M_{\rm{acc}} in the 1 - 2 MM_{\odot} interval to depend quasi-quadratically on stellar mass, with M˙acc\dot M_{\rm{acc}} \propto M2.4±0.35M_{\ast}^{2.4\,\pm\,0.35}, and inversely with stellar age M˙acc\dot M_{\rm{acc}} \propto t0.7±0.4t_{\ast}^{-\,0.7\,\pm\,0.4}. Furthermore, we compare our spectroscopic M˙acc\dot M_{\rm{acc}} measurements with solar ZZ Galactic PMS stars in the same mass range, but, surprisingly find no evidence for a systematic change in M˙acc\dot M_{\rm{acc}} with ZZ. We show that literature accretion-rate studies are influenced by detection limits, and we suggest that M˙acc\dot M_{\rm{acc}} may be controlled by factors other than ZZ_{\ast}, MM_{\ast}, and age.Comment: Accepted for publication in the Astrophysical Journal. Contains 13 pages, 11 figures, 4 table

    Pillars of creation amongst destruction: Star formation in molecular clouds near R136 in 30 Doradus

    Full text link
    New sensitive CO(2-1) observations of the 30 Doradus region in the Large Magellanic Cloud are presented. We identify a chain of three newly discovered molecular clouds we name KN1, KN2 and KN3 lying within 2--14 pc in projection from the young massive cluster R136 in 30 Doradus. Excited H2_2 2.12μ\mum emission is spatially coincident with the molecular clouds, but ionized Brγ\gamma emission is not. We interpret these observations as the tails of pillar-like structures whose ionized heads are pointing towards R136. Based on infrared photometry, we identify a new generation of stars forming within this structure.Comment: Accepted for publication in ApJ (includes 13 pages, 8 figures). For higher resolution figures please see http://www.das.uchile.cl/~vkalari/staplervk.pd

    A CCD Search for Variable Stars in the Open Cluster NGC 6611

    Full text link
    We present the results of the UBVICUBVI_C variability survey in the young open cluster NGC 6611 based on observations obtained during 34 nights spanning one year. In total, we found 95 variable stars. Most of these stars are classified as periodic and irregular pre-main sequence (PMS) stars. The analysis of the JHKSJHK_S 2MASS photometry and four-colour IRAC photometry revealed 165 Class II young stellar sources, 20 of which are irregular variables and one is an eclipsing binary. These classifications, complemented by JHKJHK UKIDSS photometry and riHαriH\alpha VPHAS photometry, were used to identify 24 candidates for classical T Tauri stars and 30 weak-lined T Tauri stars. In addition to the PMS variables, we discovered eight δ\delta Scuti candidates. None of these were previously known. Furthermore, we detected 17 eclipsing binaries where two were previously known. Based on the proper motions provided by the Gaia EDR3 catalogue, we calculated the cluster membership probabilities for 91 variable stars. For 61 variables, a probability higher than 80% was determined, which makes them cluster members. Only 25 variables with a probability less than 20% were regarded to be non-members.Comment: 30 pages, 31 figure

    The Gaia-ESO Survey: dynamics of ionized and neutral gas in the Lagoon nebula (M8)

    Get PDF
    We present a spectroscopic study of the dynamics of the ionized and neutral gas throughout the Lagoon nebula (M8), using VLT/FLAMES data from the Gaia-ESO Survey. We explore the connections between the nebular gas and the stellar population of the associated star cluster NGC6530. We characterize through spectral fitting emission lines of H-alpha, [N II] and [S II] doublets, [O III], and absorption lines of sodium D doublet, using data from the FLAMES/Giraffe and UVES spectrographs, on more than 1000 sightlines towards the entire face of the Lagoon nebula. Gas temperatures are derived from line-width comparisons, densities from the [S II] doublet ratio, and ionization parameter from H-alpha/[N II] ratio. Although doubly-peaked emission profiles are rarely found, line asymmetries often imply multiple velocity components along the line of sight. This is especially true for the sodium absorption, and for the [O III] lines. Spatial maps for density and ionization are derived, and compared to other known properties of the nebula and of its massive stars 9 Sgr, Herschel 36 and HD 165052 which are confirmed to provide most of the ionizing flux. The detailed velocity fields across the nebula show several expanding shells, related to the cluster NGC6530, the O stars 9 Sgr and Herschel 36, and the massive protostar M8East-IR. The origins of kinematical expansion and ionization of the NGC6530 shell appear to be different. We are able to put constrains on the line-of-sight (relative or absolute) distances between some of these objects and the molecular cloud. The large obscuring band running through the middle of the nebula is being compressed by both sides, which might explain its enhanced density. We also find an unexplained large-scale velocity gradient across the entire nebula. At larger distances, the transition from ionized to neutral gas is studied using the sodium lines.Comment: 26 pages, 31 figures, accepted on Astronomy and Astrophysics journa

    Resolved star formation in the metal poor star-forming region Magellanic Bridge C

    Full text link
    Magellanic Bridge C (MB-C) is a metal-poor (\sim1/5 ZZ_{\odot}) low-density star-forming region located 59 kpc away in the Magellanic Bridge, offering a resolved view of the star formation process in conditions different to the Galaxy. From Atacama Large Millimetre Array CO (1-0) observations, we detect molecular clumps associated to candidate young stellar objects (YSOs), pre-main sequence (PMS) stars, and filamentary structure identified in far-infrared imaging. YSOs and PMS stars form in molecular gas having densities between 17-200 MM_{\odot} pc2^{-2}, and have ages between \lesssim0.1-3 Myr. YSO candidates in MB-C have lower extinction than their Galactic counterparts. Otherwise, our results suggest that the properties and morphologies of molecular clumps, YSOs, and PMS stars in MB-C present no patent differences with respect to their Galactic counterparts, tentatively alluding that the bottleneck to forming stars in regions similar to MB-C is the conversion of atomic gas to molecular.Comment: Accepted for publication in MNRAS; 22 pages, 14 fig

    The VLT-FLAMES Tarantula Survey XIX. B-type Supergiants - Atmospheric parameters and nitrogen abundances to investigate the role of binarity and the width of the main sequence

    Get PDF
    TLUSTY non-LTE model atmosphere calculations have been used to determine atmospheric parameters and nitrogen (N) abundances for 34 single and 18 binary B-type supergiants (BSGs). The effects of flux contribution from an unseen secondary were considered for the binary sample. We present the first systematic study of the incidence of binarity for a sample of BSGs across the theoretical terminal age main sequence (TAMS). To account for the distribution of effective temperatures of the BSGs it may be necessary to extend the TAMS to lower temperatures. This is consistent with the derived distribution of mass discrepancies, projected rotational velocities (vsini) and N abundances, provided that stars cooler than this temperature are post RSG objects. For the BSGs in the Tarantula and previous FLAMES surveys, most have small vsini. About 10% have larger vsini (>100 km/s) but surprisingly these show little or no N enhancement. All the cooler BSGs have low vsini of <70km/s and high N abundance estimates, implying that either bi-stability braking or evolution on a blue loop may be important. A lack of cool binaries, possibly reflects the small sample size. Single star evolutionary models, which include rotation, can account for the N enhancement in both the single and binary samples. The detailed distribution of N abundances in the single and binary samples may be different, possibly reflecting differences in their evolutionary history. The first comparative study of single and binary BSGs has revealed that the main sequence may be significantly wider than previously assumed, extending to Teff=20000K. Some marginal differences in single and binary atmospheric parameters and abundances have been identified, possibly implying non-standard evolution for some of the sample. This sample as a whole has implications for several aspects of our understanding of the evolution of BSGs. Full abstract in paperComment: 21 pages, 15 figures, 11 table

    The VLT-FLAMES Tarantula Survey XV. VFTS 822: A candidate Herbig B[e] star at low metallicity

    Get PDF
    We report the discovery of the B[e] star VFTS 822 in the 30 Doradus star-forming region of the Large Magellanic Cloud, classified by optical spectroscopy from the VLT-FLAMES Tarantula Survey and complementary infrared photometry. VFTS 822 is a relatively low-luminosity (log L = 4.04 ± 0.25 L⊙) B8[e] star. In this Letter, we evaluate the evolutionary status of VFTS 822 and discuss its candidacy as a Herbig B[e] star. If the object is indeed in the pre-main sequence phase, it would present an exciting opportunity to spectroscopically measure mass accretion rates at low metallicity, to probe the effect of metallicity on accretion rates

    Classical T Tauri stars with VPHAS+ -I : H α and u-band accretion rates in the Lagoon Nebula M8

    Get PDF
    We estimate the accretion rates of 235 Classical T Tauri star (CTTS) candidates in the Lagoon Nebula using ugriugriHα\alpha photometry from the VPHAS+ survey. Our sample consists of stars displaying Hα\alpha-excess, the intensity of which is used to derive accretion rates. For a subset of 87 stars, the intensity of the uu-band excess is also used to estimate accretion rates. We find the mean variation in accretion rates measured using Hα\alpha and uu-band intensities to be \sim 0.17 dex, agreeing with previous estimates (0.04-0.4 dex) but for a much larger sample. The spatial distribution of CTTS align with the location of protostars and molecular gas suggesting that they retain an imprint of the natal gas fragmentation process. Strong accretors are concentrated spatially, while weak accretors are more distributed. Our results do not support the sequential star forming processes suggested in the literature.Peer reviewe
    corecore