44 research outputs found

    The Polycomb Group Protein EED Is Dispensable for the Initiation of Random X-Chromosome Inactivation

    Get PDF
    The Polycomb group (PcG) proteins are thought to silence gene expression by modifying chromatin. The Polycomb repressive complex 2 (PRC2) plays an essential role in mammalian X-chromosome inactivation (XCI), a model system to investigate heritable gene silencing. In the mouse, two different forms of XCI occur. In the preimplantation embryo, all cells undergo imprinted inactivation of the paternal X-chromosome (Xp). During the peri-implantation period, cells destined to give rise to the embryo proper erase the imprint and randomly inactivate either the maternal X-chromosome or the Xp; extraembryonic cells, on the other hand, maintain imprinted XCI of the Xp. PRC2 proteins are enriched on the inactive-X during early stages of both imprinted and random XCI. It is therefore thought that PRC2 contributes to the initiation of XCI. Mouse embryos lacking the essential PRC2 component EED harbor defects in the maintenance of imprinted XCI in differentiating trophoblast cells. Assessment of PRC2 requirement in the initiation of XCI, however, has been hindered by the presence of maternally derived proteins in the early embryo. Here we show that Eed (−/−) embryos initiate and maintain random XCI despite lacking any functional EED protein prior to the initiation of random XCI. Thus, despite being enriched on the inactive X-chromosome, PcGs appear to be dispensable for the initiation and maintenance of random XCI. These results highlight the lineage- and differentiation state–specific requirements for PcGs in XCI and argue against PcG function in the formation of the facultative heterochromatin of the inactive X-chromosome

    Transcription precedes loss of Xist coating and depletion of H3K27me3 during X-chromosome reprogramming in the mouse inner cell mass

    Get PDF
    Repression of Xist RNA expression is considered a prerequisite to reversal of X-chromosome inactivation (XCI) in the mouse inner cell mass (ICM), and reactivation of X-linked genes is thought to follow loss of Xist RNA coating and heterochromatic markers of inactivation, such as methylation of histone H3. We analyzed X-chromosome activity in developing ICMs and show that reactivation of gene expression from the inactive-X initiates in the presence of Xist coating and H3K27me3. Furthermore, depletion of Xist RNA coating through forced upregulation of NANOG does not result in altered reactivation kinetics. Taken together, our observations suggest that in the ICM, X-linked gene transcription and Xist coating are uncoupled. These data fundamentally alter our perception of the reactivation process and support the existence of a mechanism to reactivate Xp-linked genes in the ICM that operates independently of loss of Xist RNA and H3K27me3 from the imprinted inactive-X

    Evidence of Xist RNA-independent initiation of mouse imprinted X-chromosome inactivation

    Get PDF
    SummaryXX female mammals undergo transcriptional silencing of most genes on one of their two X-chromosomes to equalize X-linked gene dosage with XY males in a process referred to as X-chromosome inactivation (XCI). XCI is a paradigm of epigenetic regulation1. Once enacted in individual cells of the early female embryo, XCI is stably transmitted such that most descendant cells maintain silencing of that X-chromosome2. In eutherian mammals, XCI is thought to be triggered by the expression of the non-coding Xist RNA from the future inactive-X (Xi)3,4,5; Xist RNA in turn is proposed to recruit protein complexes that bring about heterochromatinization of the Xi6,7. Here we test whether imprinted XCI, which results in preferential inactivation of the paternal X-chromosome (Xp), occurs in mouse embryos inheriting an Xp lacking Xist. We find that silencing of Xp-linked genes can initiate in the absence of paternal Xist; Xist is, however, required to stabilize silencing of the Xp. Xp-linked gene silencing associated with mouse imprinted XCI, therefore, can initiate in the embryo independently of Xist RNA

    Differences between homologous alleles of olfactory receptor genes require the Polycomb Group protein Eed

    Get PDF
    Anumber of mammalian genes are expressed from only one of the two homologous chromosomes, selected at random in each cell. These include genes subject to X-inactivation, olfactory receptor (OR) genes, and several classes of immune system genes. The means by which monoallelic expression is established are only beginning to be understood. Using a cytological assay, we show that the two homologous alleles of autosomal random monoallelic loci differ from each other in embryonic stem (ES) cells, before establishment of monoallelic expression. The Polycomb Group gene Eed is required to establish this distinctive behavior. In addition, we found that when Eed mutant ES cells are differentiated, they fail to establish asynchronous replication timing at OR loci. These results suggest a common mechanism for random monoallelic expression on autosomes and the X chromosome, and implicate Eed in establishing differences between homologous OR loci before and after differentiation

    PRC2 represses transcribed genes on the imprinted inactive X chromosome in mice

    Full text link
    Abstract Background Polycomb repressive complex 2 (PRC2) catalyzes histone H3K27me3, which marks many transcriptionally silent genes throughout the mammalian genome. Although H3K27me3 is associated with silenced gene expression broadly, it remains unclear why some but not other PRC2 target genes require PRC2 and H3K27me3 for silencing. Results Here we define the transcriptional and chromatin features that predict which PRC2 target genes require PRC2/H3K27me3 for silencing by interrogating imprinted mouse X-chromosome inactivation. H3K27me3 is enriched at promoters of silenced genes across the inactive X chromosome. To abrogate PRC2 function, we delete the core PRC2 protein EED in F1 hybrid trophoblast stem cells (TSCs), which undergo imprinted inactivation of the paternally inherited X chromosome. Eed –/– TSCs lack H3K27me3 and Xist lncRNA enrichment on the inactive X chromosome. Despite the absence of H3K27me3 and Xist RNA, only a subset of the inactivated X-linked genes is derepressed in Eed –/– TSCs. Unexpectedly, in wild-type (WT) TSCs these genes are transcribed and are enriched for active chromatin hallmarks on the inactive-X, including RNA PolII, H3K27ac, and H3K36me3, but not the bivalent mark H3K4me2. By contrast, PRC2 targets that remain repressed in Eed –/– TSCs are depleted for active chromatin characteristics in WT TSCs. Conclusions A comparative analysis of transcriptional and chromatin features of inactive X-linked genes in WT and Eed –/– TSCs suggests that PRC2 acts as a brake to prevent induction of transcribed genes on the inactive X chromosome, a mode of PRC2 function that may apply broadly.https://deepblue.lib.umich.edu/bitstream/2027.42/136651/1/13059_2017_Article_1211.pd

    The Polycomb group protein Eed protects the inactive X-chromosome from differentiation-induced reactivation

    Get PDF
    The Polycomb group (PcG) encodes an evolutionarily conserved set of chromatin-modifying proteins that are thought to maintain cellular transcriptional memory by stably silencing gene expression1. In mouse embryos mutated for the PcG protein Eed, X-chromosome inactivation (XCI) is not stably maintained in extra-embryonic tissues2. Eed is a component of a histone-methyltransferase complex that is thought to contribute to stable silencing in undifferentiated cells due to its enrichment on the inactive X-chromosome (Xi) in cells of the early mouse embryo and in stem cells of the extra-embryonic trophectoderm lineage3–8. Here we demonstrate that the Xi in Eed−/− trophoblast stem (TS) cells and in cells of the trophectoderm-derived extra-embryonic ectoderm in Eed−/− embryos remains transcriptionally silent, despite lacking the PcG-mediated histone modifications that normally characterize the facultative heterochromatin of the Xi. While undifferentiated Eed−/− TS cells maintained XCI, reactivation of the Xi occurred when these cells were differentiated. These results indicate that PcG complexes are not necessary to maintain transcriptional silencing of the Xi in undifferentiated stem cells. Instead, PcG proteins appear to propagate cellular memory by preventing transcriptional activation of facultative heterochromatin during differentiation

    Differentiation-dependent Requirement of Tsix long non-coding RNA in Imprinted X-chromosome Inactivation

    Get PDF
    Imprinted X-inactivation is a paradigm of mammalian transgenerational epigenetic regulation resulting in silencing of genes on the paternally-inherited X-chromosome. The pre-programmed fate of the X-chromosomes is thought to be controlled in cis by the parent-of-origin-specific expression of two long non-coding RNAs, Tsix and Xist, in mice. Exclusive expression of Tsix from the maternal–X has implicated it as the instrument through which the maternal germline prevents inactivation of the maternal–X in the offspring. Here, we show that Tsix is dispensable for inhibiting Xist and X-inactivation in the early embryo and in cultured stem cells of extra-embryonic lineages. Tsix is instead required to prevent Xist expression as trophectodermal progenitor cells differentiate. Despite induction of wild-type Xist RNA and accumulation of histone H3-K27me3, many Tsix-mutant X-chromosomes fail to undergo ectopic X-inactivation. We propose a novel model of lncRNA function in imprinted X-inactivation that may also apply to other genomically imprinted loci

    The Murine Polycomb Group Protein Eed Is Required for Global Histone H3 Lysine-27 Methylation

    Get PDF
    PcG proteins mediate heritable transcriptional silencing by generating and recognizing covalent histone modifications. One conserved PcG complex, PRC2, is composed of several proteins including the histone methyltransferase (HMTase) Ezh2, the WD-repeat protein Eed, and the Zn-finger protein Suz12. Ezh2 methylates histone H3 on lysine 27 (H3K27) [1, 2, 3 and 4], which serves as an epigenetic mark mediating silencing. H3K27 can be mono-, di-, or trimethylated (1mH3K27, 2mH3K27, and 3mH3K27, respectively) [5]. Hence, either PRC2 must be regulated so as to add one methyl group to certain nucleosomes but two or three to others, or distinct complexes must be responsible for 1m-, 2m-, and 3mH3K27. Consistent with the latter possibility, 2mH3K27 and 3mH3K27, but not 1mH3K27, are absent in Suz12¿/¿ embryos, which lack both Suz12 and Ezh2 protein [6]. Mammalian proteins required for 1mH3K27 have not been identified. Here, we demonstrate that unlike Suz12 and Ezh2, Eed is required not only for 2m- and 3mH3K27 but also global 1mH3K27. These results provide a functionally important distinction between PRC2 complex components and implicate Eed in PRC2-independent histone methylation

    Data Throughput of Wireless Network for Fire Alarms

    Get PDF
    Import 22/07/2015Tato bakalářská práce se zabývá ostravskou hasičskou sítí, propustností, rušením a návrhem na vylepšení sítě z hlediska datové propustnosti. Analýza datové propustnosti byla provedena pomoci vlastního programu napsaného v C#. Pomocí USB tuneru Rafael Micro R820T s čipsetem RTL2832U a počítačem s operačním systémem Ubuntu 14.04, na kterém byly nainstalován software Librtlsdr, GNU radio GQRX , Teamviewer a Kazam. Těmito programy byly sledovány vstupní kmitočty převaděčů, které neodhalily žádné rušení. Dále byly vypsány možné vlivy teoretického rušení. Následně byly vymyšleny dvě teoreticky zlepšené varianty systému. První se zabývá obousměrným přenosem, kdy koncové vysílače přijímají zprávu o potvrzení přijetí z převaděče a druhá přidáním dalšího převaděče, který by se při správném umístění, které by bylo na výškové budově domova sester. Hlavní výhodou tohoto řešení je větší pokrytí oblasti. Oba tyto návrhy mají lepší vlastnosti v oblasti datové propustnosti.The bachelor thesis deals with the fire-fighting net in Ostrava, it's permeability, disturbance and improvement proposal for this net from the point of view of data permeability. Analysis of data permeability was made by own programme wrote in C#. Disturbance was watched by USB tuner Rafael Micro R820T with chipset RTL2832U and with computer with operating system Ubuntu 14.04. On Ubuntu was install a software Librtlsdr, GNU radio GQRX, Teamviewer and Kazam. But the disturbance was not found. The list of the theroretical influences on disturbance was made. Two theoretical better options were invented. The first one deals with two-way transfer and the second one proposes additional convertor. These suggestions have better properties in the field of data permeability.440 - Katedra telekomunikační technikydobř
    corecore