139 research outputs found

    Abrasive sensitivity of engineering polymers and a bio-composite under different abrasive conditions

    Get PDF
    Two different test systems were designed to evaluate the tribological behavior of five engineering plastics (Polyamide-PA grades and Ultra High Molecular Weight Polyethylene-UHMW-PE) and a fully degradable bio-composite (Polylactic Acid-PLA/hemp fibers) targeted to agricultural machinery abrasive conditions. Pin-on-plate tests were performed with different loads, sliding velocity and abrasive particles. The material response was further investigated in a slurry containing abrasive test system with different sliding velocities and distances, abrasive media compositions and impact angles. The abrasive wear, the change of the 3D surface roughness parameters, the friction force and contact temperature evolution were also analyzed as a function of the materials' mechanical properties (H,E,sigma(y),sigma(c),epsilon(B),sigma(F),sigma(M)) and the dimensionless numbers derived from them. Using the IBM SPSS 25 software, multiple linear regression models were used to statistically evaluate the measured data and to examine the sensitivity of the material properties and test system characteristics on the tribological behavior. For both test setups, the system and material characteristics influencing the dependent variables (wear, friction, heat generation) and the dimensionless numbers formed from the material properties were ranked using standardized regression coefficients derived from the regression models. The abrasion sensitivity of the tested materials were evaluated taking into account a wide range of influencing parameters

    Friction Behavior of Engineering Polymers Treated by Atmospheric DBD Plasma

    Get PDF
    The frictional behavior of (PA6 E and PETP) engineering polymers commonly used in the industry were investigated implying 3D surface topography due to Dielectric Barrier Discharge (DBD) source, atmospheric cold plasma surface treatment and compared to the pristine surface results under the same test conditions. The 3D surface topography shows a decrease in the surface roughness after treatment and keeps good topographical stability with the function of time. The friction coefficient of treated samples were lower than the pristine one under “run-out” lubrication conditions in line with surface characterization results

    Micromechanical model of dry friction hybrid polymer composite clutch facings

    Get PDF
    Modelling the complex coupled thermomechanical and tribological contact of a dry friction clutch system between cast iron flywheel and scatter-wound hybrid composite clutch facing requires a thought through investigation of the friction material properties and behaviour. Challenges of the creation of a mechanical stiffness matrix for such a complex material are described in this paper along with simplification ideas and solutions

    Abrasive wear behaviour of 27MnB5 steel used in agricultural tines

    Get PDF
    Understanding the wear mechanisms in wear parts is a crucial element of tribological investigation, particularly in agricultural applications where the knowledge about abrasive micro-mechanisms of soil engaging tools are limited. In the current research, symmetrical skew wedge cultivator tines of 27MnB5 steel were wear tested to investigate the change in mass, linear dimensions, hardness and microstructure, aiming at prolonging the lifetime of these parts through design and material. The wear mechanisms were identified and characterized by non-contact 3D optical profilometry. Test results clearly shows a zone specific wear micro-mechanism based on the tine geometry. The cutting edge of the tine can be segmented into micro-cutting and micro-ploughing zone. Vickers hardness and microstructural analysis were performed on the cross-section of the sliding interface. Tribolayer was observed on the worn surface. Degree of penetration from the wear scratches was calculated to justify the wear micro-mechanisms. A Discrete Element Method (DEM) model was developed to investigate the soil flow during the tillage process. The model results and field test wear scars are in good agreement with each other with respect to the wear patterns

    New method for dynamic tribological test of engineering polymers

    Get PDF
    In this article, tribological tests of Polyamide 6 (PA 6), Ultra High Molecular Weight Polyethylene (UHMW PE) and Polyoxymethylene copolymer (POM C) by a new testing method is introduced. The tribometer used in the test is capable for pin-on-disc measuring within all possible layout known in tribology practice, otherwise can be modified into special model of fatigue sliding test. The pin was a specimen made from examined materials, always in contact with a rotating metal disc under a normal load, which is usually static. However, since vibration exists in every practical scene as an important phenomenon, for instance in turning process, we added vibration load into the test. The supplement load is generated by a special-designed vibrating machine. Then properties of examined materials can be studied more profoundly under vibration load. As a result, different value of friction coefficient in static and vibration load have been discovered and taken into comparison
    corecore